
1. Home . 4
1.1 CodeSmith Generator API . 4

1.1.1 Using the Generator SDK . 5
1.2 User's Guide . 6

1.2.1 Welcome to CodeSmith Generator . 6
1.2.2 Installing and Upgrading . 7

1.2.2.1 Installing CodeSmith Generator . 7
1.2.2.1.1 Changing CodeSmith Generator . 11

1.2.2.2 Uninstalling CodeSmith Generator . 13
1.2.2.3 Upgrading CodeSmith Generator Templates . 14
1.2.2.4 Upgrading existing Property Set Xml Settings . 17

1.2.3 Introduction and Tutorials . 17
1.2.3.1 Main Features . 17
1.2.3.2 What's New . 18
1.2.3.3 Tutorials . 22

1.2.3.3.1 Getting Started . 22
1.2.3.3.2 Writing Your First Template . 28
1.2.3.3.3 Write a Template with Database Metadata . 33

1.2.4 Visual Studio Integration . 45
1.2.5 Using Template Explorer . 49

1.2.5.1 What is Template Explorer? . 49
1.2.5.2 The Template Explorer Toolbar . 49
1.2.5.3 Managing the Folder Tree . 49
1.2.5.4 Editing Templates . 51
1.2.5.5 Executing Templates . 51
1.2.5.6 Working with the Output Window . 53

1.2.6 Using the Template Editor . 53
1.2.6.1 Template Editor User Interface . 54

1.2.6.1.1 Template Editor Toolbar . 55
1.2.6.1.2 Template Documents . 56
1.2.6.1.3 The Properties Window . 57
1.2.6.1.4 The Output Window . 59
1.2.6.1.5 The Error Window . 59

1.2.6.2 Template Editor Features . 60
1.2.6.2.1 Bracket Highlighting . 60
1.2.6.2.2 Documentation Comment Editing . 61
1.2.6.2.3 Find and Replace . 61
1.2.6.2.4 Incremental Search . 63
1.2.6.2.5 Keyboard Shortcuts . 63
1.2.6.2.6 Line Modification Markers . 66
1.2.6.2.7 Outlining . 66
1.2.6.2.8 Statement Completion . 68
1.2.6.2.9 Tab Groups and Split Windows . 70
1.2.6.2.10 Template Navigation . 72
1.2.6.2.11 Themes and Syntax Highlighting . 73

1.2.6.3 Building, Running, and Compiling Templates . 74
1.2.6.4 Customizing CodeSmith Generator . 74

1.2.7 Using Schema Explorer . 75
1.2.7.1 Managing Extended Properties . 78

1.2.8 Using the Map Editor . 80
1.2.8.1 Developing using a Generator Map . 81

1.2.9 Using CodeSmith Generator Projects . 85
1.2.9.1 Manage Outputs . 86

1.2.9.1.1 Project Options . 89
1.2.9.2 Using a Generator Project inside Visual Studio . 92
1.2.9.3 Using Generator Project from Windows Explorer . 97
1.2.9.4 Using a Generator Project from MSBuild . 98
1.2.9.5 Using a Generator Project from Command-Line . 100
1.2.9.6 Anatomy of a Project File . 101

1.2.10 Using the Console Application . 103
1.2.10.1 Incorporating Generator into Your Build Process . 103
1.2.10.2 Basic Console Application Usage . 103
1.2.10.3 Handling Input . 104

1.2.10.3.1 Specifying Properties on the Command Line . 104
1.2.10.4 Handling Output . 104

1.2.10.4.1 Default Output Files in Templates . 104
1.2.11 Using ActiveSnippets . 104

1.2.11.1 ActiveSnippet Configuration . 108
1.2.12 Basic Template Syntax . 111

1.2.12.1 The CodeTemplate Directive . 111
1.2.12.2 Including Comments . 113
1.2.12.3 Declaring and Using Properties . 113

1.2.12.3.1 Property Directive . 114
1.2.12.3.2 Declaring an Enumerated Property . 115
1.2.12.3.3 Property Validation . 116

1.2.12.4 Escaping ASP.NET Tags . 117
1.2.12.5 The CodeSmith Generator Objects . 117

1.2.12.5.1 The CodeTemplate Object . 117
1.2.12.5.2 The Progress Object . 121
1.2.12.5.3 The CodeTemplateInfo Object . 122

1.2.13 Advanced Template Syntax . 123
1.2.13.1 Understanding CodeSmith Generator's Code Behind Model . 123
1.2.13.2 Referencing Assemblies . 125
1.2.13.3 Importing Namespaces . 126
1.2.13.4 Including External Files . 126
1.2.13.5 Sharing Common Code . 126
1.2.13.6 Debugging Templates . 126

1.2.13.6.1 Outputting Trace and Debug Information . 129
1.2.13.6.2 Viewing the Compiled Template Source Code . 130

1.2.13.7 Using Master Templates . 130
1.2.13.7.1 Registering Sub-Templates . 130
1.2.13.7.2 Merging Properties into the Parent Template . 131
1.2.13.7.3 Copying Properties from the Parent Template . 131
1.2.13.7.4 Setting Properties in a Sub-Template . 131
1.2.13.7.5 Rendering a Sub-Template . 132
1.2.13.7.6 A Sub-Template Example . 132

1.2.13.8 Writing to Multiple Outputs . 134
1.2.14 Driving Templates with Metadata . 135

1.2.14.1 Using .NET Types . 135
1.2.14.2 Using SchemaExplorer . 135

1.2.14.2.1 The SchemaExplorer Object Model . 137
1.2.14.2.2 Connection Strings . 138
1.2.14.2.3 Choosing Objects . 138
1.2.14.2.4 Sorting Collections . 142
1.2.14.2.5 Using Extended Properties . 142

1.2.14.3 XML Support . 143
1.2.14.3.1 XML Property Examples . 145

1.2.14.4 Custom Metadata Sources . 147
1.2.14.4.1 Adding Designer Support . 147
1.2.14.4.2 Adding Property Set Support . 149

1.2.14.5 Generating from Source Code . 149
1.2.15 Advanced Topics . 150

1.2.15.1 Auto Executing Generated SQL Scripts . 150
1.2.15.2 Merge Strategies . 151

1.2.15.2.1 InsertClass Merge Strategy . 151
1.2.15.2.2 InsertRegion Merge Strategy . 153
1.2.15.2.3 PreserveRegions Merge Strategy . 154
1.2.15.2.4 Defining Your Own Merge Strategy . 156

1.2.15.3 Active vs. Passive Generation . 156
1.2.15.3.1 Using Inheritance to Enable Active Generation . 157
1.2.15.3.2 Using Merge Strategies to Enable Active Generation . 158
1.2.15.3.3 Using Partial Classes to Enable Active Generation . 159

1.2.15.4 Template Caching . 159
1.2.15.5 Version Control Support . 160
1.2.15.6 Building a Custom Schema Provider for SchemaExplorer . 160

1.2.15.6.1 Creating a Custom Schema Provider . 161
1.2.15.6.2 Building a Custom Schema Provider . 167
1.2.15.6.3 Debugging a Custom Schema Provider . 168
1.2.15.6.4 Deploying a Custom Schema Provider . 169
1.2.15.6.5 Upgrading a Custom Schema Provider . 169

1.2.15.7 Using CodeSmith.CustomProperties . 169
1.2.15.7.1 FileNameEditor . 170
1.2.15.7.2 StringCollection . 172

1.2.15.8 CodeSmith.BaseTemplates . 174
1.2.15.8.1 OutputFileCodeTemplate . 174
1.2.15.8.2 SqlCodeTemplate . 174
1.2.15.8.3 StringUtil . 175
1.2.15.8.4 ScriptUtility . 176

1.2.15.9 Building a custom UITypeEditor . 176
1.2.15.10 Setting up a DataDirectory for Generator Connection Strings . 179

1.2.16 Frequently Asked Questions . 180
1.2.17 Tips and Tricks . 181
1.2.18 Internet Links . 181
1.2.19 Reference . 182

1.2.19.1 System Requirements . 182
1.2.19.2 CodeSmith Generator Samples . 182

1.2.20 Licensing and Distribution . 183
1.2.20.1 Copyrights and Trademarks . 183
1.2.20.2 Software Licenses . 183
1.2.20.3 Premier Support . 185

1.2.20.4 CodeSmith Generator Editions . 185
1.2.20.5 Product Activation and Deactivation . 186

Home
CodeSmith Generator Documentation

Welcome to the CodeSmith Generator Documentation portal. All of our documentation is provided in a friendly wiki format. Please use the
navigation tree on the left to locate the subject that you are interested in.

If you can not find what you are looking for, please feel free to contact us via our .Contact Us page

User's Guide

The is for anyone who uses . Are you new to ? You can start byCodeSmith Generator User's Guide CodeSmith Generator CodeSmith Generator
exploring the sections which will show you how to create custom templates and how to use CodeSmith Generator. TheIntroductions and Tutorials
User's Guide is also broken down into different categories with helpful pictures and video tutorials. These rich resources will help you get
acquainted with any area of CodeSmith Generator like , , and much more.Template Syntax Visual Studio Integration CodeSmith Explorer

Upgrade Guide

The is for people who are upgrading their copy of CodeSmith Generator. Just start by reading the CodeSmith Generator Upgrade Guide latest
 and the steps needed to upgrade your existing templates. Then, and follow the .Release Notes download Generator main Upgrade Guide

Developer Resources

These resources are for software developers who want to create their own templates or extend CodeSmith Generator by using the CodeSmith
Generator APIs. All of the CodeSmith Generator API Documentation can be found .here

Additional Resources

Official Site

Downloads

Online Store

Forums

Change Log

PDF Format

CodeSmith Generator API
Welcome to the CodeSmith Generator developer's API documentation. The CodeSmith Generator API documentation allows you to discover and
consume the various CodeSmith Generator features programmatically. The Generator API documentation is available both in online and offline
formats.

CodeSmith Generator exposes the entire operation of the CodeSmith Generator engine through an API. Through this API, you can compile
templates, retrieve any errors, create instances of templates, get the generated source code, fill in template metadata, and ultimately render a
template's output to a TextWriter, file, or string. This API allows you to perform many CodeSmith Generator operations from your own code in any
.NET language, and lets you programmatically execute CodeSmith Generator templates from within your own code.

Remember, CodeSmith Generator is licensed on a per-developer basis. If your application depends on programmatically
executing CodeSmith Generator templates, each user must have a license to use CodeSmith Generator.

Online Version

Please click to view the CodeSmith Generator API documentation online, all you need is a modern web browser.here

http://www.codesmithtools.com/contactus
http://docs.codesmithtools.com/display/Generator/Using+CodeSmith+Explorer
http://docs.codesmithtools.com/display/Generator/Upgrading+CodeSmith+Generator
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://www.codesmithtools.com/downloads
http://docs.codesmithtools.com/display/Generator/Upgrading+CodeSmith+Generator
http://www.codesmithtools.com/product/generator
http://www.codesmithtools.com/downloads
http://www.codesmithtools.com/store
http://community.codesmithtools.com/forums/
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://www.codesmithtools.com/help/

Offline Version

If you need to view the Generator API Documentation offline or on the go, you can download the offline version by clicking . You will then behere
prompted to save the Generator API documentation to your computer.

After downloading the , you will need to unblock the downloaded GeneratorAPI.chm file byGenerator API Documentation
following .these steps

Using the Generator SDK

After reading this document you will know how-to download, install and use the CodeSmith Generator SDK in your
applications. This document will also demonstrate the most common uses of the CodeSmith Generator API:

Compiling a template
Retrieving compile errors
Creating a new template instance
Filling in template metadata
Rendering a template

Download

After , visit the following to download the latest version of CodeSmith Generator.logging into your account the downloads section

It is recommended that you download the Zipped Version of CodeSmith Genreator as it includes all of the assemblies that you
will need to reference in your SDK application.

Installing the license

A license key file will be emailed to you after purchase the SDK license from the . This license file needs to meet one of the followingonline store
criteria:

Embed the license file into your application as an embedded resource in the assembly that calls the CodeSmith.Engine.
Place the license file into the same directory as your application.

Creating a new project

In order to use CodeSmith Generator SDK you will need to create a new .Net 4.0 or newer project. In the example below, we will be creating a
new console application.

A C# and VB.Net sample SDK project exists in your extracted samples under the following directory (Documents\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\APISample). You may need to do some minor changes like changing the
ConnectionString.

A project using an SDK license must be .Strong-Named

Adding project references

Next, yo the following assemblies:u are required to reference

CodeSmith.Core.dll
CodeSmith.Engine.dll

http://www.codesmithtools.com/help/resources/GeneratorAPI.chm
http://www.codesmithtools.com/help/resources/GeneratorAPI.chm
http://www.jeff.wilcox.name/2008/11/unblock-chms/
http://www.codesmithtools.com/
https://www.codesmithtools.com/downloads
https://www.codesmithtools.com/store
http://msdn.microsoft.com/en-us/library/wd40t7ad.aspx

These assemblies will be located in the zipped version of Generator that you downloaded in the previous step.

In the example below we will also need to reference the following assemblies:

CodeSmith.BaseTemplates.dll
SchemaExplorer.dll
SchemaExplorer.SqlSchemaProvider.dll

Writing the Code

Now it's time to dive in and write some generation code! We will add the following code to our console application:

public static void Main(string[] args)
{
 CodeTemplateCompiler compiler = new CodeTemplateCompiler("..\\..\\StoredProcedures.cst");
 compiler.Compile();
 if (compiler.Errors.Count == 0)
 {
 CodeTemplate template = compiler.CreateInstance();
 DatabaseSchema database = new DatabaseSchema(new SqlSchemaProvider(),
@"Server=.;Database=PetShop;Integrated Security=True;");
 TableSchema table = database.Tables["Inventory"];
 template.SetProperty("SourceTable", table);
 template.SetProperty("IncludeDrop", false);
 template.SetProperty("InsertPrefix", "Insert");
 template.Render(Console.Out);
 }
 else
 {
 for (int i = 0; i < compiler.Errors.Count; i++)
 {
 Console.Error.WriteLine(compiler.Errors[i].ToString());
 }
 }
 Console.WriteLine("\r\nPress any key to continue.");
 Console.ReadKey();
}

The above code will compile and run but requires the Stored Procedures template that can be found in the APISample project that was mentioned
above. If you have any SDK API questions feel free to contact .support

In addition to the methods shown in this sample, you may also find the andCodeTemplate.RenderToFile
CodeTemplate.RenderToString methods useful; they let you direct the output of your templates directly to a file or to a string
variable.

User's Guide
The is for anyone who uses CodeSmith Generator. New to CodeSmith Generator? Start by exploring the CodeSmith Generator User's Guide

 sections which will show you how to create custom templates and how to use CodeSmith Generator. The User's GuideIntroductions and Tutorials
is also broken down into different categories with helpful pictures and video tutorials. These rich resources will help you get acquainted with any
area of CodeSmith Generator like , , and much more.Template Syntax Visual Studio Integration CodeSmith Explorer

Welcome to CodeSmith Generator

http://www.codesmithtools.com/contactus
http://docs.codesmithtools.com/display/Generator/Using+CodeSmith+Explorer

1.
2.
3.

4.

CodeSmith Generator is a template-based code generator that can produce code for any text-based language. Whether your target language is
, , , T-SQL, Java or even FORTRAN, CodeSmith Generator can help you produce higher-quality, more consistent code inC# VB.NET JScript.NET

less time than writing code by hand.

Generator's familiar ASP.NET-based template syntax means that you can be writing your first templates within minutes of installing the package.
The advanced helps you create and test new templates in a rapid development setting. You can also join inGenerator Template Editor
CodeSmith Generator's active to download for such common development tasks as buildingonline community hundreds of ready-made templates
strongly-type collection classes or creating data access layers.

CodeSmith Generator Projects and are integrated within Microsoft Visual Studio to make code generation a breeze.ActiveSnippets

CodeSmith Generator also includes a and a that you can easily integrate into your automated build process, flexibleconsole version MSBuild task
strategies for merging generated code with custom code, the for integration with relational data sources, and the ability toSchemaExplorer API
hook up your own custom metadata sources.

If you're new to CodeSmith Generator, will show you how to begin generating code for your ownGetting Started with CodeSmith Generator
projects immediately. If you're an experienced CodeSmith Generator user, will point you at the major new features in this release.What's New

Installing and Upgrading

Installing CodeSmith Generator

The following pages will go over how to install, change, and uninstall CodeSmith Generator.

Changing CodeSmith Generator
Installing CodeSmith Generator
Uninstalling CodeSmith Generator

Please see for more information on activating CodeSmith Generator.this guide

Upgrading CodeSmith Generator

This section will help guide you through upgrading CodeSmith Generator and your existing templates to the latest version of CodeSmith
Generator.

To upgrade to the latest version of CodeSmith Generator please follow the steps below.

Upgrade your existing CodeSmith Generator key using the . If you have any questions, please contact .following form sales
You will receive an email containing your new key and a download link in an email.
Download and run the Installer for CodeSmith Generator. This will handle the upgrading of any previous installs of CodeSmith
Generator.
Launch Template Explorer and using the key you received in your email (step 2).activate

Additional Upgrade Guides

Upgrading CodeSmith Generator Templates

Upgrading existing Property Set Xml Settings

Installing CodeSmith Generator

Installing

The following section will go over how to download CodeSmith Generator, customizing the installation, and changing the samples directory.

Download

http://msdn.microsoft.com/en-us/vcsharp/default.aspx
http://msdn.microsoft.com/en-us/vbasic/default.aspx
http://msdn.microsoft.com/en-us/library/ms974588.aspx
http://community.codesmithtools.com/
http://community.codesmithtools.com/File_Share/f/7.aspx
http://www.codesmithtools.com/upgrade
http://www.codesmithtools.com/contactus

In order to download the latest CodeSmith Generator installer, just visit our . If you need a previous version, just send us an emaildownload page
and we will be happy to provide you with the download.

Once you have the CodeSmith Generator installer downloaded, double click on the icon to launch it. Depending on your settings, you may be
presented with this window:

Before clicking run, please make sure that Visual Studio and previous versions of CodeSmith Generator are not running. If
these programs are closed, click run to continue with the installation.

Customizing Your Setup

http://www.codesmithtools.com/downloads

1.

2.

3.

4.

This window will allow you to customize which components of CodeSmith Generator you want to install. You can do this by clicking on the icon to
the left of the component you want to change. You will be presented with the following options.

Will be installed on local hard drive.
This means the feature will be installed in your current default hard drive.

Entire feature will be installed on local hard drive.
This means that the parent and child features will be selected as "Will be installed on local hard drive".

Feature will be installed when required.
The feature will be installed when you perform an action that requires it.

Entire feature will be unavailable.
The selected feature won't be installed at all.

From the same window, you can also change the destination folder of CodeSmith Generator by clicking browse and selecting the file path you
wish CodeSmith Generator to be placed. If you don't want to change any of these settings, just click next to continue with the default settings.

Changing The Samples Directory

After clicking next on the Custom Setup window, you will be presented with the below window.

By clicking browse in this window, you can change the file path you want your samples directory to be located in.

Please make sure that you have read/write permissions as the currently logged in user to the folder you're trying to set your
samples directory to.

Next: Uninstalling CodeSmith Generator

Changing CodeSmith Generator

Changing

In order to change currently installed features and components of CodeSmith Generator, you will either need to:

Go to your control panel, select Uninstall a program, find CodeSmith Generator and click 'Change' at the top bar, or right click CodeSmith
Generator and click 'Change'.
Find your original CodeSmith Generator set up file and run it. If you deleted the set up file, you can download it here. If you need a
previous version, please contact us via email.

Both of these options will bring you to this set up window.

Click 'Change' to continue with editing your features.

From this window, you can:

Reset - Resets all configurations to their default settings
Disk Usage - Displays the current space available in all of your hard drives.
Back - Brings you to the start page.
Next - Continues with the changes with the current changes made.

1.

2.

3.

4.

Cancel - Cancels the setup and closes the window.

Customizing Your Setup

The previous window will allow you to customize which components of CodeSmith Generator you want to install. You can do this by clicking on
the icon to the left of the component you want to change. You will be presented with the following options.

Will be installed on local hard drive.
This means the feature will be installed in your current default hard drive.

Entire feature will be installed on local hard drive.
This means that the parent and child features will be selected as "Will be installed on local hard drive".

Feature will be installed when required.
The feature will be installed when you perform an action that requires it.

Entire feature will be unavailable.
The selected feature won't be installed at all.

Click next after you have finalized your changes to finish the setup.

Next: Installing CodeSmith Generator

Uninstalling CodeSmith Generator

Uninstalling

Uninstalling CodeSmith Generator is no different than most programs. Just go to your control panel, Programs, then select 'Uninstall a program'.

After you select 'Uninstall a program', the below window will appear. From there you just need to select "CodeSmith Generator (Your version
number)" and then select 'Uninstall' on the top bar.

Uninstalling CodeSmith Generator is usually a one-step process, unless you already have some custom templates set up. In that case, you will be
presented with this window.

Select yes to delete all samples in the samples directory you specified when you installed CodeSmith Generator. By default, the samples directory
is here (C:\Users\(User Name Here)\Documents\CodeSmith Generator\Samples), so if you need to make some back up files make them before
selecting yes. Or select no to keep your samples directory for the next time you install CodeSmith Generator.

Upgrading CodeSmith Generator Templates

We strive to ensure that CodeSmith Generator templates are 100% backwards compatible. However, in very rare circumstances break
backwards compatibility to progress the platform. When we do break backwards compatibility, we ensure that the benefits of breaking
compatibility greatly outway the benefits of not breaking compatibility. Please refer to this document when upgrading CodeSmith Generator to

1.

2.

3.

4.

5.

6.

ensure that you have the smoothest experience possible.

Upgrading from all previous versions of CodeSmith Generator

Please read this guide when upgrading from any version of CodeSmith Generator.

Recompiling Template Assembly References

If you have a or you are custom template that references an assembly that references CodeSmith Generator using one of our Template
.Frameworks (E.G., PLINQO, CSLA...) then please continue reading this step

When upgrading from any version of CodeSmith Generator, please follow the following steps:

Locate your templates source code folder or source project (The source code for our Template Frameworks can be found in the
templates \Source\ directory) and open the Visual Studio solution.
Update all assembly references that reference CodeSmith.Engine to .NET 4.0 (This does not mean that the template you write has to
target .NET 4.0! This just means that your CodeSmith Generator class libraries need to be compiled as .NET 4.0)
Update all of the in your Solution that reference CodeSmith assemblies. The references needVisual Studio project's assembly references
to be updated to use the new CodeSmith Generator assemblies which are located in the Generator Program Files folder.
Add a project reference to to all Visual Studio projects that reference CodeSmith assemblies. This assembly is locatedCodeSmith.Core
in the CodeSmith Generator Program Files bin folder.
Rebuild your Solution. If you are updating an existing Template Framework Solution. Please ensure that each projects compiled
assemblies are being copied to the correct folder after build (E.G., from the \ProjectName\bin\debug folder to the templates
\common\ folder).
Regenerate.

The source code for our can be found in the templates Source directory.Template Frameworks

Downloading the latest Templates

CodeSmith Generator ships with the latest version of the templates so there is no need to go out and download the latest set of templates.
However, the latest set of templates can be found on the .CodeSmith Generator Google Code project

Updating existing CodeSmith Generator Projects

After upgrading to the latest version of CodeSmith Generator, please ensure that your are up to date. You can do this byGenerator Project files
opening and ensuring that the template location points to the latest version of the templates.Manage Outputs

Upgrading from CodeSmith Generator 2.x, 3.x, 4.x, 5.x

Updates to CodeTemplates Validate method

If you are using a custom CodeTemplate that overrode the Validate method as shown below:

public override void Validate() {
}

you will need to update the method signature to the following:

public override System.Collections.Generic.IEnumerable<ValidationError> GetCustomValidationErrors()
{
}

After the method signature has been changed, you will need to update the code implementation to return a list of validation errors.

This change ensures that the CodeTemplates State property will always be correct and any exceptions thrown in GetCustomValidationErrors() will
not affect the generation process.

Updates to IMergeStrategy.Merge() method signature

If you are using a custom please update the Merge method signature as shown below:Merge Strategy

http://www.codesmithtools.com/product/frameworks
http://msdn.microsoft.com/en-us/library/bb398202.aspx
http://msdn.microsoft.com/en-us/library/f3st0d45.aspx
http://www.codesmithtools.com/product/frameworks
http://code.google.com/p/codesmith/downloads/list

public string Merge(CodeTemplate context, string sourceContent, string templateOutput) {
 return templateOutput;
}

you will need to update the method signature to the following:

public string public string Merge(CodeSmith.Engine.MergeContext context)
 return context.OutputContent;
}

After the method signature has been changed, you will need to update the code implementation to use the various properties located on the
MergeContext.

These changes were made to provide additional information for Merge Strategies (E.G.,) as well as additionalInsertClass Merge Strategy
information to be added to the MergeContext object in the future without breaking the API.

Template Frameworks like PLINQO have already been updated for these changes and will not require a recompile!

Encoding changes

Templates are now generated as UTF-8, this change was made to be more consistent with various other editors like Visual Studio. If you wish to
have files generate using ascii or a different encoding please set the on your masterResponseEncoding CodeTemplate Directive attribute
template before generating. This also ensures that your template output will always be consistent when generating in any .culture

SchemaExplorer Type Converter changes

The SchemaExplorer Type Converters have been removed and replaced with a single object. This newSchemaObjectFactoryTypeConverter
Type Converter handles the conversion for all SchemaExplorer types deriving from SchemaObjectBase or SchemaObjectCollection. If your
template code is using a SchemaExplorer Type Converter as shown below it can be safely removed.

[TypeConverter(typeof(SchemaExplorer.TableSchemaCollectionTypeConverter))]

Upgrading from CodeSmith Generator 2.x

Please read this guide when upgrading from CodeSmith Generator 2.x. CodeSmith Generator Templates are almost 100% compatible with
CodeSmith Generator 2.x templates, there are a couple breaking changes that CodeSmith Generator 2.x users should be aware of when
upgrading. You may need to make minor changes to your CodeSmith Generator 2.x templates to have them work perfectly in the latest version of
CodeSmith Generator.

CodeTemplate Directives are required

CodeSmith Generator requires every template to have a . The CodeTemplate directive must be the first thing in the file,CodeTemplate directive
with the possible exception of template comments.

Changes to template comments

CodeSmith Generator 2.x allowed you to use several formats for template comments that the latest version of CodeSmith Generator does not
allow. In particular, these two formats are no longer accepted for template comments:

<% // some template header %>
<%-- some comment %>

In the latest version of CodeSmith Generator, the only acceptable format for template headers and comments is as follows:

http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/f7c5ec19-dbde-07de-9594-b3cd361ac606.htm

<%-- some template header --%>
<%-- some comment --%>

Note that other formats are still valid when you want to include a comment in the generated source code. This is distinct from including a comment
in the template that does not appear in the generated code. To generate a C# comment, you still use the format

<% // some C# comment %>

and to generate a VB comment, you still use the format

<% ' some VB comment %>

Register sub-templates declaratively

Although you can still programmatically compile sub-templates, it is more efficient to use the new Register directive instead.

Upgrading existing Property Set Xml Settings

In previous versions of CodeSmith Generator prior to . CodeSmith Generator stored property settings in an XmlCodeSmith Generator 4.0
document. An entirely new format was built to replace the existing format; the new format is named . It has manyCodeSmith Generator Project file
improvements and capabilities over the previous format. A command line option was built to upgrade existing stored Xml Property Settings to the
new format.

Upgrade Instructions

To upgrade to the new format, we will be using the . The first step is to launch command prompt andCodeSmith Generator Console application
type in:

cs.exe mypropertyset.xml /upgrade:mynewcsp.csp

If you are encountering any issues while upgrading to the new format, please contact .support

Introduction and Tutorials

For our Introduction and Tutorials of CodeSmith Generator we offer the below sections.

Main Features

There are many features available in CodeSmith Generator. In our Main Features page you will see the features that really set CodeSmith
Generator apart and how powerful it can be.

What's New

Check out our What's New section to see the features that we added for each new version.

Tutorials

Tutorials is for any CodeSmith Generator user and was designed to help get our users up and running in no time flat.

Main Features

At its most basic, CodeSmith Generator is an application to generate code by combining templates with metadata. Within that framework, it
includes a number of powerful features:

http://www.codesmithtools.com/contactus

A similar to ASP.NET.powerful template language
A for quick interactive code generationsimple user interface
An object model that allows your templates to interact directly with the CodeSmith Generator engine
A complete integrated development environment (IDE) for CodeSmith Generator templates
Strong Integration within for executing and managing your code generation.Visual Studio
Powerful code generation automation using , console-based code generation, and MSBuild task.CodeSmith Generator Projects
Interactive features for tracking down template errorsdebugging
Flexible including .NET types, database connectivity, XML support, and custom metadata sourcesmetadata providers
Console-based code generation for use in automated build processes
And many more features which can be found .here

What's New

For a full change log of all the new features and bug fixes for each version of CodeSmith Generator be sure to look at the CodeSmith Generator
.Release Blog

CodeSmith Generator 6.0

Brand new template editor integrated right into Visual Studio 2010! CodeSmith Generator Studio has been removed as the Template
Editor is now integrated into Visual Studio 2010. We are also working on a standalone editor!
Vastly improved IntelliSense with support for directives, extension methods, lambdas, generics, anonymous types, parameter information
and more!
Improved Syntax Highlighting and Template Output Highlighting support.
Brand new parsing engine that should provide much better template errors as well as a great foundation to build on for the future.
.NET 4.0 support in templates.
PropertyGrid has been updated to allow property filtering, collection editing, default instance creation, auto expanding of objects and
much more.
Added Go to Definition and View Code support!
SchemaExplorer collections have been updated to use generic collections that give a bunch of new features like LINQ support.
New default property serializer that will enable serialization of just about any object and not require custom property serializers to be
written. You can now just create an object in the template and use it as a property type.
Brand new Template Explorer that provides complete shell context menus and other features. If you are using something like Tortoise for
version control, you will now have access to those features right inside of Template Explorer.
64bit assembly support.
Most of the engine is multi-threaded and should make better use of multiple core machines.
New Visual Studio Item templates to help you create templates faster.
Added Code Navigation support.
Unified Generation Experience!
Improved documentation for Generator 6.0.
Added the ability to automatically generate Xml documentation inside of your templates by typing ''' or /// before a property or method.
Many other and bug fixes.small improvements

CodeSmith Generator 5.3

Added CS_IsUserDefinedTableType as an ExtendedProperty to the SqlSchemaProviders ParameterSchema object. This will return true
if the type is a User-Defined Table Type.
Added support for Function-Based Indexes in the OracleShcemaProvider.
Added CS_IndexType and CS_ColumnExpression as an ExtendedProperty to the OracleSchemaProviders IndexSchema object.
Added the ability to save property enumerations that do not have a default value of 0 defined.
Added the SQLAnywhereSchemaProvider. This has been tested against Sybase IAnywhere 11.0.
Added the ISeriesSchemaProvider. Requires iSeries OS v5.4 or greater and has been tested against v6.1.
Added Flash support to the CodeSmith Generator Studio browser.
Added the ability to silently uninstall CodeSmith Generator using the /quiet flag.
Added initial support for GetExtendedProperties and GetCommandResultSchemas to the PostgreSQLSchemaProvider.
Updated the DbType and native type mappings in the PostgreSQLSchemaProvider.
Updated the ADOXSchemaProvider error handling to better support Microsoft Visual FoxPro 9.0.
Renamed CodeSmith to CodeSmith Generator and updated product logos, license agreements and start page.
Updated the Microsoft Connection String Designers to the latest version.
Updated the SqlSchemaProvider to support Table UDT's as a ParameterSchema.

CodeSmith Generator 5.2

Added Visual Studio 2010 Beta 2 Support (Beta).
Added option to the installer to choose a different sample folder.
Fixed a bug where the following error would occur: Unable to cast object of type 'SchemaExplorer.ADOXSchemaProvider' to type
'SchemaExplorer.IDbSchemaProvider'.
Fixed a bug where multiple licenses would not be deactivated during deactivation.
Added upgrade support for previous versions of CodeSmith.
Fixed a bug where an exception would be thrown when an invalid connection string would be passed into any connection string editor.
Fixed a bug where optional merged properties in a Class Library were not being marked as optional.
Fixed a bug where selecting a blank DataSource from a UI Picker would throw a NullReferenceException.
Added a detailed error message to FileNameEditor, it will now let the user know that there GetFileName override is throwing an

http://www.codesmithtools.com/product/generator#features
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/06/02/Announcing-The-CodeSmith-Generator-6.0-Visual-Studio-Template-Editor.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/10/05/codesmith-generator-6-0-go-to-definition-and-view-code-support.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/21/codesmith-generator-6-0-template-explorer.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/10/12/unifying-the-codesmith-generator-experience.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/21/codesmith-generator-6-0-template-explorer.aspx

exception.
Fixed an issue where the property grid would be blank but as soon as you clicked on the property it would appear.
Fixed a rare bug where CodeSmith Studio couldn't resolve a template's referenced assemblies on the very first load.
Fixed a bug where the Property Grid wouldn't refresh properties that had been changed in an assembly.
Fixed a bug where the Splash Screen would attempt to be closed during a race condition causing an Exception.
Fixed a bug where the Uninstaller would not close the registry key it opened.
Fixed a bug where a Required Property would be ignored when generating from CodeTemplateGenerator.
Added an option to the tool bar in CodeSmith Studio to add a new blank template.
Updated CodeTemplateGenerator to use the template cache when clicking the build button.
Fixed a bug where clicking Build in the CodeTemplateGenerator dialog would discard property data.
Added a notification to the CodeTemplateGenerator when generating a template that's OutPutType is set to none.
Added support for SQL Functions (table-valued and scalar-valued).
Added IncludeFunctions Property to SchemaObjectBase, setting this to true enables SQL Function support.
Fixed a bug in DatabaseSchemaSerializer where a changed property would never be changed back to true (DeepLoad).
Added Filtering support to all Command UI dialogs.
Added support to set the Command UI DataSource based on the IncludeFunctions property.
Fixed various memory leaks greatly reducing CodeSmith's footprint.
Fixed a bug where cached data would be deleted prematurely.
Fixed a bug where renaming a folder shortcut to a previous name would throw a NullReferenceException.
Added overloads for CommandResultColumnSchema and ParameterSchema to GetVBVariableType and GetCSharpVariableType in the
SQLCodeTemplate and VBSqlCodeTemplate.
Fixed a bug that prevented the Visual Studio Integration from unlocking referenced assemblies.
Fixed a bug where the Active Snippets configuration dialog was not working as expected.
Fixed a bug where the Active Snippets Configuration would throw an OutOfRangeException when arranging Arguments.
Fixed a bug where one could not activate CodeSmith inside of Visual Studio.
Fixed a bug where generating a file to a directory outside of the Visual Studio Solution would throw an exception.
Fixed a bug where closing Visual Studio during generation would throw a NullReferenceException.
Fixed a bug where an XML Namespace error would occur in Visual Studio when generating .NET 3.5 console applications.
Fixed a bug where Saving a Setup Project file during generation would throw a COMException.
Fixed a bug where the DataSource manager would throw an exception when loading up the VistaDBSchemaProvider.
Fixed a bug in the SQLSchemaProvider where the where logic of the command queries would return incorrect results.
Removed the permissions (id) check in SQLSchemaProvider GetCommand's queries.
Fixed a bug in the SQLSchemaProvider where GetCommandResultSchemas was not correctly handling temp tables.
Fixed a bug in the SQLSchemaProvider could throw a NullReferenceException on invalid extended table data.
Fixed a bug in the SQLSchemaProvider where connecting to a replicated database would cause a timeout to occur.
Fixed a bug in the PostgreSchemaProvider where multicolumn indexes were not handled correctly.
Updated the PostgreSQLSchemaProvider assembly references to the latest version.
Fixed a bug in the SqlCompactSchemaProvider where ROWGUIDCOL was not included in the GetTableColumns().
Fixed a performance bug in MySQLSchemaProvider, where DataReader.NextResult() or DataAdapter.Fill() would take 10-20 seconds to
return data.
Fixed a bug in the OracleSchemaProvider where the HasExtendedPropertiesTable could return a false positive.
Updated the custom property examples: added a Collection and Drop Down example.
Updated the Command Wrapper templates to support SQL Functions as well they can be used in Visual Studio integration.
Added an HTML photo gallery example.
The Kinetic Framework - Updated to latest version.
CSLA - Updated to version 1.1.1.
PLINQO - Updated to version 4.0.
NHibernate - Updated to version 1.1.5.
Updated the CodeSmith documentation.
Various other minor changes.

CodeSmith Generator 5.1

Fixed a bug where removing a data source from Database Explorer wouldn't permanently remove the data source.
Fixed a threading error when removing a data source from Database Explorer.
Fixed a bug where CodeSmith would throw an exception when it couldn't access the systems registry.
Fixed a bug where Copy Properties would throw an exception when called on a unsaved template.
Fixed a bug where the SqlCompactSchemaProvider connection string builder class could corrupted additional connection string options.
Fixed a bug where the SqlCompactSchemaProvider timestamp/rowversion columns were returning a "rowversion" native type name,
should be "timestamp".
Added CodeSmith Customer Improvement Program.
Various other minor changes.
Fixed a bug where Generate Outputs would throw an error if a Visual Studio Solution contained a Setup and Deployment project.
Various minor updates to Visual Studio's Integration.
Updated Visual Studio Integration to unlock assemblies after generation.
Fixed a bug where a CSP in Solution folder causes ERROR: Object reference not set to an instance of an object.
CodeSmith Studio now requires that .NET 3.5 SP1 to be installed.
Fixed a bug where CodeSmith Studio would attempt to save a csp for a unsaved template.
Fixed a bug where a NullReferenceException would be thrown when toggling the properties window when no template properties existed.
Fixed a bug where extracting mapping files could cause an exception.
Added Widening, Narrowing, Like, Let, CUInt, CULng, CUShort, and Operator to the VB.NET keyword list.
Added var to the C# keyword list.
Fixed a bug when using Intellisense and Math. or some variable names would throw an ArgumentOutOfRangeException.
Updated CodeSmith Options dialog's.

Added support to give feedback and send detailed error information from within CodeSmith.
Updated Menu in CodeSmith Explorer, Users can now view the mapping editor, submit feedback, help, or configure options.
Updated Manage Outputs and child dialogs to save the window dimensions.
Added IndexedEnumerable, this is used to smartly enumerate collections and get a IsEven, IsLast, IsFirst property.
Added Linq Querying support to all SchemaExplorer Collections.
Added MergeProperty functionality for parsing properties from a CodeTemplate that inherits from an assembly.
Added Insert Class Merge Strategy.
Added CodeParser.
Added support to detect an embedded SDK License.
CodeSmith Configuration no longer uses xml files.
Updated the documentation for IDbSchemaProvider and DataObjectBase.
Fixed a bug in OracleSchemaProvider where AllowDBNull would always be set to true for view columns.
Fixed a bug in OracleSchemaProvider where the TableSchema.PrimaryKeys collection wasn't being populated correctly.
Updated OracleSchemaProvider's configuration to be configurable via the options dialog.
Added SQL CLR Support to the SqlSchemaProvider. To see if a command is a CLR procedure check the "CS_IsCLR" extended property.
Fixed a bug in SQLSchemaProvider where an xml index would be set to null after upgrading a SQL Server 2005 database to SQL Server
2008.
Fixed a bug in SQLSchemaProvider where the ExtendedData query was missing the PropertyBaseType and Minor columns when
querying SQL Server 2000 ExtendedData.
Added PostgreSQLSchemaProvider, SqlCompactSchemaProvider, SQLiteSchemaProvider, VistaDBSchemaProvider.
Updated .netTiers to version 2.3 RTM.
Updated PLINQO to version 3.0.
Added CSLA Beta templates.
Various other minor changes.

CodeSmith 5.0

Added a tab for editing variables in the CodeSmith Project settings dialog.
Made it so that any .csp variables are automatically used when there is a string matching the variable value in the property values.
Made it so that variables are automatically created for connection strings stored in .csp files so that the connection string isn't repeated.
Made schema explorer designers load their data sources async so that the UI would not lock.
Changed all SchemaExplorer designers to display in Object (Owner) format so that you can type the first couple letters to jump to the
object you are looking for.
Added ability to override plural/singular forms of words to the StringUtil.ToPlural and StringUtil.ToSingular methods.
Added ability to specify Filter="SomeTableSchemaProperty" on ColumnSchema directives which will filter the list of columns in the
designer based on the table selected in the specified property.
Added new RegisterReference method to CodeTemplate to indicate which assemblies your generated code relies on so that they can be
automatically added in Visual Studio.
Added a menu item for managing data sources to the Visual Studio CodeSmith menu.
Various improvements to the OracleSchemaProvider including full extended property support.
Changed ColumnSchema designer to use a treeview so that all columns for all tables aren't loaded at once.
Added ability to deep load all schema information at once which results in huge performance improvements. This is used by setting the
DeepLoad attribute on any SchemaExplorer property in your template. This would typically be used when you know you are going to use
all of the schema information from a database.
Ability to use .net 3.5 features in templates including LINQ. This is accomplished by setting the CompilerVersion attribute on
CodeTemplate to "v3.5".
CodeSmith Projects now have a single file output mode to generate all template outputs into a single file.
Added Ability to generate individual project outputs.
Made it so that files being generated from a CodeSmith Project are checked out of source control before being edited.
Improved the custom tool upgrade process so that it works 100% in all scenarios without having to make manual changes afterward.
CodeSmith Projects can now add files to Visual Studio as code behind files to other generated files.
CodeSmith Projects can now set a generated files build action.
Added ability to resolve assemblies located in paths relative to the template now using Path attribute. Looks in template folder and \bin
folder by default.
Optimized template caching algorithm allows for much improved performance.
Templates use partial classes now so you can have partial class code behinds and have access to template properties from the code
behind file.
Added GetPropertyAttribute and SetPropertyAttribute to CodeTemplate.
Property attribute values are added for any non-recognized attributes on Property, XmlProperty and CodeTemplate directives.
Re-organized all sample templates and projects into a more logical folder structure.
Added new NHibernate templates in both C# and Visual Basic.
Made various improvements to the Plinqo templates.
.netTiers updated to the 2.3 version of the templates.
Added VB versions of many sample templates and projects.
Included the latest version of the NuSoft framework templates.
Many other minor enhancements, performance improvements, and bug fixes.

CodeSmith 4.1

Auto property refresh when running your templates including SchemaExplorer objects and external XML sources.
Added IDbConnectionStringEditor interface so schema providers can provide connection string editing interfaces. A connection string
editor was implemented for SqlSchemaProvider, ADOXSchemaProvider and OracleSchemaProvider.
Added Indexes and Keys to the SchemaExplorer tool window in CodeSmith Studio.
Added support for Visual Studio 2008 (Orcas).

Added NoWarn attribute to CodeTemplate directive to allow ignoring compiler warnings.
Added several new sample templates as well as source code for the SqlSchemaProvider.
Many other minor enhancements, performance improvements, and bug fixes.

CodeSmith 4.0

CodeSmith Projects (.csp) - This feature makes automating your code generation process really easy and consistent whether you are
working from inside of Visual Studio 2005, MSBuild, Windows Explorer, a command line / batch file, or CodeSmith itself.
ActiveSnippets - Imagine Visual Studio 2005 snippets, but with the full power of CodeSmith available to execute any logic or access any
complex metadata (including database schema and XML data) to control the output of your snippets.
CodeSmith Maps (.csmap) - This feature will allow you to create dictionary style maps of things like SQL to C# data type mappings.
.netTiers 2.0 - The .netTiers templates have been greatly enhanced and included with CodeSmith 4.0.
NHibernate Templates - NHibernate templates have now been included and are able to get you started with using NHibernate.
CSLA .NET 2.0 Templates - They latest CSLA .NET 2.0 templates have been included and are greatly improved.
DbSnapshot Templates - Script all objects and table data out from a Microsoft SQL Server database.
Extended Property Management - You can now manage schema extended properties inside of CodeSmith Studio.
Property Persistence - CodeSmith now remembers the property values from the last time you executed a template.
Greatly enhanced Visual Studio 2005 integration.
Support for running CodeSmith in non-admin accounts as well as in Vista UAC.

CodeSmith Studio
Many improvements have been made to the performance of the IDE.
IntelliSense has been improved (including ctrl-space support) in both templates and code behind files.
Added recent news items to the start page.

CodeSmith Explorer
Supports drag and drop to move/copy files.
Improved performance.

CodeSmith Engine
PropertyChanged event is now exposed on each template.
Added OnChanged attributes to Property and XmlProperty directives.
XmlProperty now stores a file reference to the source XML instead of the XML contents.
XmlProperty now shows the XML file name in the property grid and can be edited.
Added ContextData object to templates for storing various non-persistent state which is shared with sub-templates.
IPropertySerializer interface has been changed to give property serializers access to more contextual information.
Added a Initializing state to the template State enum.

SchemaExplorer
Improved handling of SQL Server BLOB DataTypes
Improved ParameterSchema meta-data in CommandParameterSchema now containing DefaultValue Schema Information.
Ton of new system extended properties added to SchemaExplorer objects.

Many other minor enhancements, performance improvements, and bug fixes.

CodeSmith 3.2

Built and optimized for .NET 2.0 / Visual Studio 2005
CodeSmith MSBuild task
Numerous other minor improvements and bug fixes

CodeSmith 3.1

New help file
Numerous other minor improvements and bug fixes

CodeSmith 3.0

Completely re-written parser/compiler which is faster and correctly reports line numbers from the template instead of from the compiled
template source. This results in a much nicer debugging experience.
XML support - There is now an XmlProperty directive that makes working with XML easier. This directive will give you a stronglymuch
typed object model to work with if you provide an XSD schema or it will give you an XmlDocument instance if you don't. This feature
combined with the new IntelliSense feature make working with XML a breeze.
Statement completion in CodeSmith Studio (similar to Visual Studio's IntelliSense)
Template caching.
New that makes working with sub-templates much nicer.Register directive
Console client has been improved to include a batch mode, , and the ability to use any setting properties from the command line merge

.strategy
Merge strategies have been overhauled to be more extensible and can be setup to work with any language.
New has been introduced.PreserveRegions merge strategy
DbDocumenter templates have been overhauled to be a best-practices sample for 3.0.
Indented output rendering.
IPropertySerializer interface can be implemented to allow for .serialization of custom property types

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using%20_a_CodeSmith_Project_to_Generate_Anywhere.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using_ActiveSnippets.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using_a_CodeSmith_Map.html
http://www.nettiers.com/
http://www.codeplex.com/Wiki/View.aspx?ProjectName=CSLAcontrib
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Manage_Extended_Properties_Through_Schema_Explorer.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Cached_Property_Set.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/XML_Support.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Statement_Completion.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using_Sub-Templates.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Specifying_Properties_on_the_Command_Line.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Specifying_a_Merge_Strategy.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Specifying_a_Merge_Strategy.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Merge_Strategies.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/PreserveRegions_Merge_Strategy.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_Response_Object.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Adding_Property_Set_Support.html

New and methods that can be overridden in your templates.PreRender PostRender
Ability to after generating them.auto-execute SQL scripts
Ability to at a time.render to more than one TextWriter
Tons of other minor improvements and bug fixes.

Tutorials

The CodeSmith Generator Tutorial includes the various sections which will quickly help you become a master of Code Generation. Although
there's a lot of depth to CodeSmith Generator, you can get started with it quickly. In this section of the documentation, we'll walk you through a
few common code generation scenarios.

Getting Started

The best way to understand the power of CodeSmith Generator is to try it out. Although CodeSmith Generator has many advanced features, you
can begin using it to help produce code without mastering all of those features. In this section, you'll learn how to use Generator to generate a
useful piece of utility code - specifically, a strongly-typed hash table class.

Writing your first Template

Knowing how to execute templates that others have written is the first step towards with CodeSmith Generator, but to realize thegetting started
full benefit of CodeSmith Generator in your day to day development tasks, you'll need to write your own templates. In this tutorial, you'll learn how
to do just that, working through the entire process of writing a CodeSmith Generator template from start to finish.

Write a Template with Database Metadata

One of the key uses for code generation is to build code based on database schema. CodeSmith Generator enables this scenario through the use
of the SchemaExplorer assembly, which provides types for working directly with SQL Server or ADO data as well as designers that can be used
to access those types from CodeSmith Generator. In this tutorial, you'll see how you can use the information available through SchemaExplorer,
together with scripting code, to make short work of building a complex T-SQL script.

Getting Started

The best way to understand the power of CodeSmith Generator is to try it out. Although CodeSmith Generator has many advanced features, you
can begin using it to help produce code without mastering all of those features. In this section, you'll learn how to use Generator to generate a
useful piece of utility code - specifically, a strongly-typed hash table class. This exercise should take you no more than five minutes to complete,
but it will introduce you to , and show you the power of Generator's template-based code generation scheme.Template Explorer

Next: Launching Template Explorer

Launching Template Explorer

One way to start a code generation session is with Template Explorer. Just as Windows Explorer serves to organize files and folders stored on
your computer, Template Explorer serves to organize templates. To launch Template Explorer, select from theCodeSmith Generator Explorer
CodeSmith Generator program menu. This will open Template Explorer with an initial view showing all of the folders containing templates in your
CodeSmith Generator installation.

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_OnPreRender_Event.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_OnPostRender_Event.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Auto_Executing_Generated_SQL_Scripts.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Outputting_Multiple_Files.html

Important Note: Generator Explorer is the name of the application as seen in the tool bar. However, it is just a wrapper
around Template Explorer.

Check out this video tutorial for an overview on the Template Explorer:

Next: Opening a Template

If you have not yet activated your copy of CodeSmith Generator , you'll see a product activation dialog box when you launch
CodeSmith Explorer. Click Try to proceed with this example, or Register to proceed with .product activation

Opening a Template

Templates are patterns for generated code. CodeSmith Generator comes with a set of useful templates to get you started. You can also download
more templates from our as well as share them.CodeSmith Community Site

You might find that as you work with CodeSmith Generator, you'll start to develop your own custom templates. Template Explorer makes it easy
to generator a template quickly as well as organize templates in folders so you can quickly find the template you are looking for.

http://community.codesmithtools.com/File_Share/default.aspx

To open a folder, click on the arrow sign to the left of a specific folder to see the list of templates stored in the folder.

The .cst file extension stands for "CodeSmith Generator Template." You can probably guess from the names what the various templates do. For
example, the HashTable.cst template, which can be found in the Other\Collections\Advanced folder, generates C# code for a hash table class. To
open this template, just Double-click the template or right-click the template and select the Execute menu item.

Next: Setting Properties

Setting Properties

A code generator that generated the exact same code every time wouldn't be very useful (you might as well just paste in a saved code file, if
that's what you want). CodeSmith Generator templates use to let you customize the generated code. When you open a template fromproperties
Template Explorer, the template's property sheet shows you all of the properties that the template requires. You need to supply values for these
properties before CodeSmith Generator can generate the code for you. The HashTable.cst template that we opened in the previous step requires
four string properties (ClassName, ClassNamespace, ItemType, and KeyType) and one enumerated property (Accessibility). You can type any
value you like for a string property; an enumerated property presents you with a drop-down list of choices when you click in it. For this first
experiment, fill out the property sheet this way:

One of the best things about CodeSmith Generator is that properties can be based on many different types of metadata. For instance, you can
create a property that presents a list of all of the tables in a database, letting the user choose a table when they're generating the code. You can
learn more about this in the section on .Driving Templates with Metadata

You can also filter the properties that are shown in the property sheet, by typing the name of the property in the Filter Search
Box located above the property sheet.

Next: Generating Code

Generating Code

When you've finished setting properties for the template, you're ready to generate code. To do this, click the button at the bottom of theGenerate
template's property sheet. CodeSmith Generator will take the property values that you entered and combine them with the template to create the
code, and display it in an . The generated code can be edited by typing in the generated output window. You can also easily copyoutput window
or save the generated text by clicking on the respected buttons at the top of the output window.

In this case, the code window contains around 320 lines of generated code for the hash table class, implementing the IDictionary, ICollection,
IEnumerable, and ICloneable interfaces. There's nothing there that you couldn't write yourself if you're a reasonably experienced C# developer -
but why bother? This is the sort of routine work that CodeSmith Generator is ideally suited for. With CodeSmith Generator, you can devote your
time and energy to identifying patterns in your code, turning them into templates, and then reuse them with maximum flexibility in the future.

Next: Inspecting the Template

Advanced: .Using a CodeSmith Generator Project to Execute CodeSmith Templates from Anywhere

Inspecting the Template

Let's take a peek behind the scenes at the HashTable.cst template itself. Remember, the template contains the instructions that CodeSmith
Generator uses to generate the code. Return to Template Explorer, but this time right-click on the template and select Edit. This will open the
template in the default template editor. CodeSmith Generator ships with a full-featured Template Editor as shown below for editing or generationg
templates.

1.
2.
3.
4.

Later on in this help file you can learn more about the in detail. For now, just poke around the source code for the template a bit:Template Editor
it's displayed in the main editing area. As you can see, CodeSmith Generator's template language is very similar to ASP.NET. The file starts off
with a set of directives, including some that declare the various properties that appear in the template. These properties can be used later in the
template by enclosing them in special tokens. For example, line 32 of code in the template

<%= GetAccessModifier(Accessibility) %> class <%= ClassName %>:

instructs CodeSmith Generator to output the the class modifier (E.G., public, private...) followed by literal string "class" followed by the value of the
ClassName property when it is generating code.

If there's something you don't like about the HashTable template, you can change it here. For example, you might like to add some comments to
explain the reason why each interface is included. You can just type these into the template and save your changes to have CodeSmith
Generator use the altered template in the future.

Next: Where to Go from Here

Where to Go From Here

That's all you need to know to generate code using the templates that are included with CodeSmith Generator:

Launch Template Explorer
Select a template
Supply values for properties
Generate the code

But you can do much more than just use the included templates. Here are some places to continue your exploration:

Visit the for more templatesCodeSmith support site
Learn more about to write your own templatestemplate syntax
Get the details on editing templates with the Template Editor
See how to enhance your templates with metadata
Incorporate CodeSmith into your build process

Writing Your First Template

http://community.codesmithtools.com/f/

Knowing how to execute templates that others have written is the first step towards with CodeSmith Generator. But to realize thegetting started
full benefit of CodeSmith Generator in your day to day development tasks, you'll need to write your own templates. In this tutorial, you'll learn how
to do just that, working through the entire process of writing a CodeSmith Generator template from start to finish.

Next: Spotting the Need

Spotting the Need

Think about your average day of software development. Some of it probably involves brand-new innovative work that breaks new ground and
doesn't resemble anything that you've ever done before. But other parts are probably more routine. Whether it's writing the code for a public
property backed by a private variable, creating an About This Application dialog box for a new product, or designing a new page for the corporate
Web site, much of your day probably involves routine coding tasks that you've done before with only minor variations.

Any time you find yourself doing one of these repetitive tasks, you've found a candidate for code generation. Creating source code files (or Web
pages, SQL statements, HTML pages, or any other text file) with minor variations is exactly the sort of thing that CodeSmith Generator is
designed for. For example, if you're writing C# code, you know that every C# project contains an AssemblyInfo.cs file with metadata about the
project. Visual Studio automatically creates a skeleton AssemblyInfo.cs file for you when you create a new project, but it's full of comments
designed for the novice developer, and attributes for every conceivable purpose. That's fine as a teaching tool, but it's not what most developers
want to see in their source code. So typically, you'll start a new project by cutting out the junk, adding a few comments of your own, and making a
standard set of changes to the attributes that remain. That's a perfect candidate for code generation: a process that you do over and over again
with a few variations. Let's use CodeSmith Generator to generate just the AssemblyInfo.cs file that you need, without all the fluff.

Next: Creating the Template

Creating the Template

CodeSmith Generator templates are plain text files that contain three different types of content:

Directives to the CodeSmith Generator engine
Static content that is copied directly to the template's output
Dynamic content (programming code) that is executed by the CodeSmith Generator engine

The dynamic content in a CodeSmith Generator template can be written in C#, Visual Basic, or JScript. For this template, we'll use C# as the
template scripting language. We can set the scripting language (C#, Visual Basic, JScript) in the language attribute asCodeTemplate directive's
shown in the code sample below). For this template you can use the or notepad.Generator Template Editor

Every CodeSmith Generator template starts with a . This directive tells CodeSmith Generator some basic facts about theCodeTemplate directive
template. Here's the for this template:CodeTemplate directive

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Description="Create an AssemblyInfo.cs file." %>

The CodeTemplate directive sample above defines three attributes (Language, TargetLanguage and Description).

The attribute specifies the scripting language that will be used within the template itself. Their are three valid attribute valuesLanguage
that can be defined: C#, VB or JavaScript.
The attribute specifies the language of the generated output.TargetLanguage
The attribute gives the purpose of the template.Description

With this single line of code saved as a file named AssemblyInfo.cst, you've got a CodeSmith Generator template. But it doesn't do anything yet.

Next: Start with the Result

Start with the Result

The easiest way to build a CodeSmith Generator template is to start with an example of the code that you want to generate - in this case, a
finished AssemblyInfo.cs file. Here's one that we'll use as we move through this tutorial:

using System.Reflection;
using System.Runtime.CompilerServices;
//
// Created: 1/1/1973
// Author: Blake Niemyjski
//
[assembly: AssemblyTitle("User storage utility")]
[assembly: AssemblyDescription("Helps manage data in Isolated Storage files.")]
[assembly: AssemblyConfiguration("Retail")]
[assembly: AssemblyCompany("MegaUtilities, Inc.")]
[assembly: AssemblyProduct("StorageScan")]
[assembly: AssemblyCopyright("Copyright (c) MegaUtilities, Inc.")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyFileVersion("1.0")]
[assembly: AssemblyDelaySign(true)]

When you're looking at the file that you want to generate, you need to break the file up into three different types of content:

Content that will never change
Content that can be automatically generated.
Content that you will prompt the user for

In the sample above, we've decided that we are going to automatically generate the Created Date on line 4, and we'll prompt the user to specify
the values for Author, Title, Description, Configuration, Company, Product, Version and FileVersion. The rest of the file we'll treat as static text. Of
course, you need to make these decisions with an understanding of how you'll use your template. In this case, for example, we've decided to
hard-code the AssemblyDelaySign attribute to always be true. If your use of that attribute varied from project to project, you would want to make
that a dynamic part of the template that you prompted the user for.

Now that we know what we want to build, it's time to get the content into the template.

Although we're not using the capability in this example, CodeSmith Generator templates can easily contain conditional logic. For
example, you could prompt the user for a value for the AssemblyDelaySign attribute, and then include additional attributes in the
template's output if they set that attribute to true.

Next: Static Content in the Template

Static Content in the Template

Adding static content to a CodeSmith Generator template is easy. If CodeSmith Generator sees something in the template that it doesn't
recognize as dynamic scripting content, it copies that content directly to the template's output. So the first step in building our new template is to
tack the existing file on to the template without any changes:

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Description="Create an AssemblyInfo.cs file." %>
using System.Reflection;
using System.Runtime.CompilerServices;
//
// Created: 1/1/1973
// Author: Blake Niemyjski
//
[assembly: AssemblyTitle("User storage utility")]
[assembly: AssemblyDescription("Helps manage data in Isolated Storage files.")]
[assembly: AssemblyConfiguration("Retail")]
[assembly: AssemblyCompany("MegaUtilities, Inc.")]
[assembly: AssemblyProduct("StorageScan")]
[assembly: AssemblyCopyright("Copyright (c) MegaUtilities, Inc.")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyFileVersion("1.0")]
[assembly: AssemblyDelaySign(true)]

At this point, you can run the template, and you'll get output: in fact, you'll get the original file back, because there's no dynamic content in this
template at all. Next, you need to modify the template to take advantage of the power of CodeSmith Generator's dynamic scripting and interactive
metadata.

Next: Making the Content Dynamic

Making the Content Dynamic

The next step is to let CodeSmith Generator generate the parts of the output that it can calculate automatically. To do this, we'll insert C# code
into our template, using special scripting tags with the same syntax as ASP.NET. CodeSmith Generator looks for sections of your template
surrounded with <%= and %> tokens, and treats the contents of those tags as expressions to evaluate at runtime. The result of those expressions
is then inserted into the generated code in place of the scripting expression.

Here's the template with two expressions in place of the hard-coded dates in the original (the changes are on line 5):

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Description="Create an AssemblyInfo.cs file." %>
using System.Reflection;
using System.Runtime.CompilerServices;
//
// Created: <%= DateTime.Now.ToLongDateString() %>
// Author: Blake Niemyjski
//
[assembly: AssemblyTitle("User storage utility")]
[assembly: AssemblyDescription("Helps manage data in Isolated Storage files.")]
[assembly: AssemblyConfiguration("Retail")]
[assembly: AssemblyCompany("MegaUtilities, Inc.")]
[assembly: AssemblyProduct("StorageScan")]
[assembly: AssemblyCopyright("Copyright (c) <%= DateTime.Now.Year.ToString() %> MegaUtilities,
Inc.")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyFileVersion("1.0")]
[assembly: AssemblyDelaySign(true)]

Now, the creation date and copyright date will be filled in automatically by CodeSmith Generator whenever the template is executed. But there are
other parts of this file that can't be determined automatically by CodeSmith Generator , such as the assembly title and assembly description. For
that sort of variable data, the solution is to prompt the user at runtime, using CodeSmith Generator properties.

Next: Adding a Template Property

Adding a Template Property

CodeSmith Generator uses to define the metadata for a template. You need to add one property directive to the template forproperty directives
each piece of information that you want to collect from the user when the code is generated. Here are the property directives we'll need for our
AssemblyInfo.cst template:

<%@ Property Name="Author" Type="System.String" Description="Lead author of the project." %>
<%@ Property Name="Title" Type="System.String" Description="Title of the project." %>
<%@ Property Name="Description" Type="System.String" Description="Description of the project." %>
<%@ Property Name="Configuration" Type="System.String" Default="Debug" Description="Project
configuration." %>
<%@ Property Name="Company" Type="System.String" Default="MegaUtilities, Inc." %>
<%@ Property Name="Product" Type="System.String" Description="Product Name." %>
<%@ Property Name="Version" Type="System.String" Default="1.0.*" Description=".NET assembly
version." %>
<%@ Property Name="FileVersion" Type="System.String" Default="1.0" Description="Win32 file
version." %>

Each of these properties has a name (which we'll use to refer to the property in scripting code), and a type (in this case, they're all strings). Some
of the properties also have default values, although, as you can see, you're not required to supply a default value for a property. Most of the
properties also have a description. When the user selects a property in the template's property sheet, CodeSmith Generator displays the
description to help them enter the proper data.

The next step is to make the connection between these properties and the spots in the template where we want to output their values.

Next: Using Properties in the Template

Using Properties in the Template

To insert the value of a property in the generated output from the template, use the same <%= and %> syntax that you used with calculated
fields, but this time use the name of the property for CodeSmith Generator to evaluate. Here's our final template:

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Description="Create an AssemblyInfo.cs file." %>
<%@ Property Name="Author" Type="System.String" Description="Lead author of the project." %>
<%@ Property Name="Title" Type="System.String" Description="Title of the project." %>
<%@ Property Name="Description" Type="System.String" Description="Description of the project." %>
<%@ Property Name="Configuration" Type="System.String" Default="Debug" Description="Project
configuration." %>
<%@ Property Name="Company" Type="System.String" Default="MegaUtilities, Inc." %>
<%@ Property Name="Product" Type="System.String" Description="Product Name." %>
<%@ Property Name="Version" Type="System.String" Default="1.0.*" Description=".NET assembly
version." %>
<%@ Property Name="FileVersion" Type="System.String" Default="1.0" Description="Win32 file
version." %>
using System.Reflection;
using System.Runtime.CompilerServices;
//
// Created: <%= DateTime.Now.ToLongDateString() %>
// Author: <%= Author %>
//
[assembly: AssemblyTitle("<%= Title %>")]
[assembly: AssemblyDescription("<%= Description %>")]
[assembly: AssemblyConfiguration("<%= Configuration %>")]
[assembly: AssemblyCompany("<%= Company %>")]
[assembly: AssemblyProduct("<%= Product %>")]
[assembly: AssemblyCopyright("Copyright (c) <%= DateTime.Now.Year.ToString() %> <%= Company %>")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("<%= Version %>")]
[assembly: AssemblyFileVersion("<%= FileVersion %>")]
[assembly: AssemblyDelaySign(true)]

Note that a single property (such as Company) can appear at multiple places in the template.

You can download the above template by clicking here

By now the template might look a good deal more complicated to you than the original file. But remember: you only have to write the template
once. Then you just use it whenever you need a new file. The investment in time of adding property directives and other dynamic content will be
repaid very quickly as you use the template.

Next: Compiling the Template and Generating Code

Compiling the Template and Generating Code

At this point, the template is ready to use. Save the file, and then double-click it in Windows Explorer. This will open the template's property sheet.
Fill in values for the template's properties and click the 'Generate' button to build a new AssemblyInfo.cs file instantly:

There! Wasn't that easier than editing yet another file that Visual Studio didn't build to your standards?

We chose this example to be a simple "Hello World" type template. How much time it would save you depends on how many new projects you
create, of course. But this same technique - starting with the output you want to build, identifying the static content, making the content dynamic,
and adding properties for the dynamic content - works with a wide range of code. You can build code for remoting and Web services, data access
layers, standard user interfaces, and anything else you can imagine. CodeSmith Generator lets you replace repetitive hand-coding with code
generation. That's a powerful productivity booster that you'll wonder how you ever lived without.

Write a Template with Database Metadata

One of the key uses for code generation is to build code based on database schema. CodeSmith Generator enables this scenario through the use
of the SchemaExplorer assembly, which provides types for working directly with SQL Server or ADO data as well as designers that can be used
to access those types from CodeSmith Generator. In this tutorial, you'll see how you can use the information available through SchemaExplorer,
together with scripting code, to make short work of building a complex T-SQL script.

Next: HTTP Endpoints in SQL Server

More information:

Using SchemaExplorer

HTTP Endpoints in SQL Server 2005

Among the many new features in SQL Server 2005 is the ability to create by running T-SQL code. HTTP endpoints have severalHTTP endpoints
uses, including setting up SQL Service Broker connections and database mirroring over TCP/IP, but the one we'll be concerned with here is that
HTTP endpoints make it easy to build Web services that return SQL Server data. In fact, if your copy of SQL Server 2005 is running on Windows
Server 2003, you don't even need to have IIS installed to create a Web service that returns SQL Server data. A stored procedure coupled with a
CREATE ENDPOINT statement will do the trick.

As with many of the other advanced parts of T-SQL, though, the CREATE ENDPOINT statement has a good many optional clauses and a lot of
complexity. If you're going to need it more than once or twice, that offers an ideal opening for code generation. Rather than deal with that
complexity all the time, figure it out once and embed your knowledge in a CodeSmith template. To begin with, you'll need an example of the SQL
that you want to create.

Next: The Desired SQL Statements

The Desired SQL Statements

We're going to create an HTTP endpoint that returns all of the data from a particular table. Because HTTP endpoints can only return information
from stored procedures or functions, this means we'll actually have to build two SQL statements: one to create a stored procedure, and one to
create the endpoint itself. As usual, the easiest way to build a CodeSmith template is to start with a copy of the output that you want to produce. In
this case, here are the SQL statements to build an HTTP endpoint based on the Person.AddressType table in the AdventureWorks sample
database:

CREATE PROC dbo.PersonAddressTypeProc
AS
 SELECT

 AddressTypeID,
 , Name
 , rowguid
 ModifiedDate
 FROM
 Person.AddressType
GO
>CREATE ENDPOINT GetAddressType
 STATE = STARTED
AS HTTP
(
 PATH = '/AddressType',
 AUTHENTICATION = (INTEGRATED),
 PORTS = (CLEAR),
 SITE = 'localhost'
)
FOR SOAP
(
 WEBMETHOD 'AddressTypeList'
 (NAME='AdventureWorks.dbo.PersonAddressTypeProc'),
 BATCHES = DISABLED,
 WSDL = DEFAULT,
 DATABASE = 'AdventureWorks',
 NAMESPACE = 'http://AdventureWorks/AddressType'
)

 GO

Now that we understand where we're headed, we can start the journey. This time, we'll use CodeSmith Generator as our tool, to get a sense of
the support that it offers for quickly writing templates.We've highlighted two types of information in the statements above. The red highlights show
parts of the SQL statements that the user can choose from a small list of possibilities. The green highlights show information that CodeSmith
Generator can determine from the SQL Server database after the user specifies a database table. The rest of the template will just be static text.

Next: Creating the Template in CodeSmith Generator

Looking at the SQL

You don't really need to understand the ins and outs of the CREATE ENDPOINT statement to follow along with this tutorial, but you might like to
know what's going on here anyhow. Here are a few notes on the various clauses in this SQL statement:

The STATE clause specifies the initial state of the endpoint. It can be started, stopped (listening but returning errors to clients) or disabled
(not evening listening for requests)
The AS HTTP clause specifies the transport protocol to use. You can also specify AS TCP here.
The PATH clause specifies the URL on the server that clients will use to reach this Web service.
The AUTHENTICATION clause specifies how clients will authenticate themselves to the SQL Server: BASIC, DIGEST, NTLM,
KERBEROS, or INTEGRATED.
The PORTS clause specifies whether the service will listen on the CLEAR or SSL ports, or both (other clauses, not shown here, let you
specify non-standard port numbers)
The SITE clause lets you specify a hostname for the computer that will respond to requests.
The FOR SOAP clause states that this endpoint will respond to SOAP messages.
The WEBMETHOD clause defines a Web method, mapping a method name to the name of a stored procedure
The BATCHES clause specifies that this endpoint won't process arbitrary SQL statements.
The WSDL clause specifies that it will provide WSDL support.
The DATABASE clause specifies the database that contains the data.
The NAMESPACE clause specifies the XML namespace for the messages.

Creating the Template in the Generator Template Editor

This time, we'll use the to create the template. This will help get you familiar with the Generator Template Editor asGenerator Template Editor
well as see how fast it can speed up template development. To get started, launch Visual Studio and select File > New > File from the Visual
Studio menu bar.

You can also open a new or existing Visual Studio Project and select Add new item from the Solution Explorer.

This will open the Visual Studio New File Wizard. Next, you will want to select CodeSmith Generator under the General Installed Templates node.
Doing this will only show you the available CodeSmith Generator Item Templates.

We are wanting to create a new Visual Basic Generator Template so we will choose the item above by double clicking on the selected item or
clicking the Open button.

This will create a new template with some boiler plate code in it to remind you how the various parts of a CodeSmith Generator template fit
together. Start by modifying the :CodeTemplate directive

<%@ CodeTemplate Language="VB" TargetLanguage="T-SQL" Description="Create an HTTP Endpoint." %>

The TargetLanguage attribute is used to determine how to syntax highlight the static content of a template. The Description attribute is used to
provide a tooltip for the template.

Next, replace the rest of the sample template code with the T-SQL that we want to generate. Now we've got the starting point: a template that
turns out completely static SQL.

<%@ CodeTemplate Language="VB" TargetLanguage="T-SQL" Description="Create an HTTP Endpoint." %>
CREATE PROC dbo.PersonAddressTypeProc
AS
 SELECT
 AddressTypeID,
 Name,
 rowguid,
 ModifiedDate
 FROM
 Person.AddressType
GO
CREATE ENDPOINT GetAddressType
 STATE = STARTED
AS HTTP
(
 PATH = '/AddressType',
 AUTHENTICATION = (INTEGRATED),
 PORTS = (CLEAR),
 SITE = 'localhost'
)
FOR SOAP
(
 WEBMETHOD 'AddressTypeList'
 (NAME='AdventureWorks.dbo.PersonAddressTypeProc'),
 BATCHES = DISABLED,
 WSDL = DEFAULT,
 DATABASE = 'AdventureWorks',
 NAMESPACE = 'http://AdventureWorks/AddressType'
)
GO

Of course, you don't want a static template. The next step is to start making the content dynamic.

Next: Setting up Enumerated Properties

Setting up Enumerated Properties

Several of the pieces of information that we want to collect from the user have a limited number of acceptable choices. For example, the state of
the endpoint can only be STARTED, STOPPED, or DISABLED; anything else will lead to a T-SQL error. Rather than prompting the user for
freeform input (and running the risk of having them type an unacceptable value), it's much more sensible to offer a list of just the acceptable
choices. Fortunately, you can do this by defining an enumerated property.

To set up an enumerated property, you need to define a type that only allows the values you want. You can do this by creating an enumeration.
Start by moving to the end of the template and start typing <script which will show you an IntelliPrompt and allow you to autocomplete the script
block.

If you press the tab button or click on the script IntelliPrompt (or any IntelliPrompt) which is shown in the above image, the
action will be autocompleted. In this case the script block will be created with an ending script tag.

After the script block has been created, lets create the new enumeration type:

<script runat="template">
Public Enum StateEnum
 STARTED
 STOPPED
 DISABLED
End Enum
</script>

Now you can use a CodeSmith Generator to define a property that makes use of the new type:Property directive

<%@ Property Name="InitialState" Type="StateEnum" Category="Options" Default="STARTED"
Description="The initial state of the Web service." %>

There's one more piece that you need to add to make it all work, though. Under the covers, .NET treats enumerations as integers, but you want to
insert literal strings in the generated code. To make the translation, you'll also need to add a helper function inside of the script block:

Public Function GetState (ByVal State As StateEnum) As String
 Select Case State
 Case StateEnum.STARTED
 GetState = "STARTED"
 Case StateEnum.STOPPED
 GetState = "STOPPED"
 Case StateEnum.DISABLED
 GetState = "DISABLED"
 End Select
End Function

Having done this, you can get the string corresponding to the user's choice of InitialState property by inserting <%= GetState(InitialState) %>
anywhere in the template. After adding enumerations, properties, and helper functions for the authentication and port properties, here's the
current state of our template:

<%@ CodeTemplate Language="VB" TargetLanguage="T-SQL" Description="Create an HTTP Endpoint." %>
<%@ Property Name="InitialState" Type="StateEnum" Category="Options" Default="STARTED"
Description="The initial state of the Web service." %>
<%@ Property Name="Authentication" Type="AuthenticationEnum" Category="Options"
Default="INTEGRATED" Description="Authentication method." %>
<%@ Property Name="Port" Type="PortsEnum" Category="Options" Default="CLEAR" Description="Port to
use." %>

CREATE PROC dbo.PersonAddressTypeProc
AS
 SELECT
 AddressTypeID,
 Name,
 rowguid,
 ModifiedDate
 FROM
 Person.AddressType
GO
CREATE ENDPOINT GetAddressType
 STATE = <%= GetState(InitialState) %>
AS HTTP
(
 PATH = '/AddressType',
 AUTHENTICATION = (<%= GetAuthentication(Authentication) %>),
 PORTS = (<%= GetPort(Port) %>),
 SITE = 'localhost'
)
FOR SOAP
(
 WEBMETHOD 'AddressTypeList'
 (NAME='AdventureWorks.dbo.PersonAddressTypeProc'),
 BATCHES = DISABLED,
 WSDL = DEFAULT,
 DATABASE = 'AdventureWorks',
 NAMESPACE = 'http://AdventureWorks/AddressType'
)
GO

<script runat="template">
Public Enum StateEnum
 STARTED
 STOPPED
 DISABLED
End Enum

Public Enum AuthenticationEnum
 BASIC
 DIGEST
 NTLM
 KERBEROS
 INTEGRATED
End Enum

Public Enum PortsEnum
 CLEAR
 SSL
End Enum

Public Function GetState (ByVal State As StateEnum) As String
 Select Case State
 Case StateEnum.STARTED
 GetState = "STARTED"
 Case StateEnum.STOPPED
 GetState = "STOPPED"
 Case StateEnum.DISABLED
 GetState = "DISABLED"
 End Select
End Function

Public Function GetAuthentication (ByVal Authentication As AuthenticationEnum) As String
 Select Case Authentication
 Case AuthenticationEnum.BASIC
 GetAuthentication = "BASIC"
 Case AuthenticationEnum.DIGEST
 GetAuthentication = "DIGEST"
 Case AuthenticationEnum.NTLM
 GetAuthentication = "NTLM"
 Case AuthenticationEnum.KERBEROS
 GetAuthentication = "KERBEROS"
 Case AuthenticationEnum.INTEGRATED
 GetAuthentication = "INTEGRATED"
 End Select
End Function

Public Function GetPort (ByVal Port as PortsEnum) As String
 Select Case Port
 Case PortsEnum.CLEAR
 GetPort = "CLEAR"
 Case PortsEnum.SSL
 GetPort = "SSL"
 End Select
End Function
</script>

So far, so good. But there's still one thing missing: a connection to the database. We'll tackle that next.

Don't forget to save your template by clicking on the Save icon or selecting File -> Save from the menu located at the top of the
Generator Template Editor.

Next: Setting up a SQL Property

Setting up a SQL Property

In order to generate code based on a database table, the template has to somehow know about the database table. This means supplying
metadata through a property that refers to the table. Fortunately, CodeSmith Generator includes the SchemaExplorer library, which contains a
rich set of types designed specifically for interacting with databases. One of these types, TableSchema, allows the user to pick a table from a
database. You can then use the object model in the SchemaExplorer library to retrieve just about any information you need about the table and
the database. Here's the that we need:Property directive

<%@ Property Name="SourceTable" Type="SchemaExplorer.TableSchema" Category="Context"
Description="Table that the Web service will access." %>

CodeSmith Generator itself doesn't have any special knowledge of the types in the SchemaExplorer library, so we need to tell it to load the
assembly containing the library. It's also useful to import the SchemaExplorer namespace to keep the amount of typing we have to do to a
minimum:

<%@ Assembly Name="SchemaExplorer" %>
<%@ Import Namespace="SchemaExplorer" %>

When the user selects a table with SchemaExplorer, the TableSchema object will be populated and returned to CodeSmith Generator. For the
most part, this particular template can be filled out just by retrieving the names of the table, the table's owner, and the database name from this
object. All of those are easily available by navigating around the :SchemaExplorer object model

<%= SourceTable.Name %>
<%= SourceTable.Owner %>
<%= SourceTable.Database.Name %>

Substituting those expressions in appropriate places will get you most of the way through writing this particular template. But there's still one task
left that requires a bit of coding: building the list of column names for the stored procedure.

Next: Writing the Database Code

Writing the Database Code

The trickiest part of writing this particular template is retrieving the list of column names for the stored procedure definition. Those, too, are
available from SchemaExplorer. The TableSchema object contains a Columns collection, which you can iterate through in code. You can place
scripting code directly in your template by enclosing it within <% and %> tokens. Here's the code we need to build the list of columns, complete
with appropriate commas:

<% For i As Integer = 0 To SourceTable.Columns.Count -1 %>
<%= SourceTable.Columns(i).Name %><% If i < SourceTable.Columns.Count - 1 Then %>,<% End If %>
<% Next %>

Note the difference here between code to execute (surrounded by <% %> tokens), expressions to evaluate (surrounded by <%= %> tokens) and
static content to copy to the output (not surrounded at all). You may find keeping all this straight one of the more confusing aspects of working
with CodeSmith Generator at first.

With all of the pieces in place, here's the final template:

<%@ CodeTemplate Language="VB" TargetLanguage="T-SQL" Debug="True" Description="Create an HTTP
Endpoint." %>
<%@ Property Name="InitialState" Type="StateEnum" Category="Options" Default="STARTED"
Description="The initial state of the Web service." %>
<%@ Property Name="Authentication" Type="AuthenticationEnum" Category="Options"
Default="INTEGRATED" Description="Authentication method." %>
<%@ Property Name="Port" Type="PortsEnum" Category="Options" Default="CLEAR" Description="Port to
use." %>
<%@ Property Name="SourceTable" Type="SchemaExplorer.TableSchema" Category="Context"
Description="Table that the Web service will access." %>
<%@ Assembly Name="SchemaExplorer" %>
<%@ Import Namespace="SchemaExplorer" %>

http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/8dc7a3fa-7b86-bf9a-409c-e453aa09f681.htm

CREATE PROC dbo.<%= SourceTable.Owner %><%= SourceTable.Name %>Proc
AS
 SELECT
 <% For i As Integer = 0 To SourceTable.Columns.Count -1 %>
 <%= SourceTable.Columns(i).Name %><% If i < SourceTable.Columns.Count - 1 Then %>,<% End If
%>
 <% Next %>
 FROM
 <%= SourceTable.Name %>
GO
CREATE ENDPOINT Get<%= SourceTable.Name %>
 STATE = <%= GetState(InitialState) %>
AS HTTP
(
 PATH = '/<%= SourceTable.Name %>',
 AUTHENTICATION = (<%= GetAuthentication(Authentication) %>),
 PORTS = (<%= GetPort(Port) %>),
 SITE = 'localhost'
)
FOR SOAP
(
 WEBMETHOD '<%= SourceTable.Name %>List'
 (NAME='<%= SourceTable.Database.Name %>.dbo.<%= SourceTable.Owner %><%= SourceTable.Name
%>Proc'),
 BATCHES = DISABLED,
 WSDL = DEFAULT,
 DATABASE = '<%= SourceTable.Database.Name %>',
 NAMESPACE = 'http://<%= SourceTable.Database.Name %>/<%= SourceTable.Name %>'
)
GO

<script runat="template">
Public Enum StateEnum
 STARTED
 STOPPED
 DISABLED
End Enum
Public Enum AuthenticationEnum
 BASIC
 DIGEST
 NTLM
 KERBEROS
 INTEGRATED
End Enum
Public Enum PortsEnum
 CLEAR
 SSL
End Enum

Public Function GetState (ByVal State As StateEnum) As String
 Select Case State
 Case StateEnum.STARTED
 GetState = "STARTED"
 Case StateEnum.STOPPED
 GetState = "STOPPED"
 Case StateEnum.DISABLED
 GetState = "DISABLED"
 End Select
End Function

Public Function GetAuthentication (ByVal Authentication As AuthenticationEnum) As String
 Select Case Authentication
 Case AuthenticationEnum.BASIC
 GetAuthentication = "BASIC"
 Case AuthenticationEnum.DIGEST
 GetAuthentication = "DIGEST"
 Case AuthenticationEnum.NTLM
 GetAuthentication = "NTLM"
 Case AuthenticationEnum.KERBEROS
 GetAuthentication = "KERBEROS"
 Case AuthenticationEnum.INTEGRATED
 GetAuthentication = "INTEGRATED"
 End Select
End Function

Public Function GetPort (ByVal Port as PortsEnum) As String
 Select Case Port
 Case PortsEnum.CLEAR
 GetPort = "CLEAR"
 Case PortsEnum.SSL
 GetPort = "SSL"
 End Select
End Function
</script>

Click to download the completed template.here

Next: Testing the Final Result

More Information:

SchemaExplorer

Testing the Final Result

Now that you've written the template, it's easy to test it out. First you'll need to compile the template, so that CodeSmith Generator will display the

right properties in the Properties Window. Click the Build button on the toolbar or press Ctrl+Shift+B to do this. Assuming that there are no errors
in the template, you'll see progress messages in the Output Window:

---------------- Compile started -----------------
Build complete -- 0 errors, 0 warnings
---------------------- Done ----------------------
Compile succeeded

If there are any errors in the template, they'll display in the Output Window.

Now you can use the Properties Window to enter values for the template's properties. For the three enumerated properties, you'll find that
CodeSmith Generator provides dropdown lists to choose from.

To set the SourceTable property, click in the property value. CodeSmith Generator will display a builder button with three dots. Click the builder
button to open the Table Picker dialog box.

Here you can select the data source, and the table within that data source, to use with the template. You can also click the builder button next to
the Data Source combo box to create new data sources. After choosing a table, click the Select button to return to the editor.

When you're done setting properties, click the Generate toolbar button or press F5 to run the template. CodeSmith Generator will generate the
template's output and switch to the Output tab so that you can save or copy the output.

More Information:

SchemaExplorer

Building, Running, and Compiling Templates

Visual Studio Integration

In addition to the standalone user interface Template Explorer, CodeSmith Generator also offers integration with Microsoft Visual Studio. This integration

takes many forms:

Template Explorer

To use from within Visual Studio, select Template Explorer from the Generator menu which is located between the Tools andTemplate Explorer
Help menu. This will open the Template Explorer tool window. This window can be floating or docked, just like any other Visual Studio tool
window.

Template Explorer has the same functionality in Visual Studio that it does as a standalone program.

Template Editor

The is now integrated seamlessly into Visual Studio (as pictured above). The editor features rich IntelliSense, autoGenerator Template Editor
completion, documentation capabilities, go-to-definition support and .much more

The Template Editor features rich IntelliSense and auto completion support just like Visual Studio. This allows you to increase productivity
while developing templates.

The Template Editor also features Go-To-Definition support which will take you instantly to the identifier's definition via the Object Browser.

CodeSmith Generator Project Integration

CodeSmith Generator Projects can be used to generate code within your Visual Studio Projects.

ActiveSnippets

ActiveSnippets can be used to generate snippets of code similar to Visual Studio's snippets except with the full power of CodeSmith
Generator templates and the ability to use complex metadata like database schema and XML.

You can easily name your snippets to quickly generate exactly what you want.

Running the snippet is very easy, all you need to do is press CTRL-E twice or select Generator -> Expand ActiveSnippet from the Visual Studio
menu.

Learn More

You can also check out this video tutorial to learn more!

Using Template Explorer

Using Template Explorer covers the below sections:

What is Template Explorer?
The Template Explorer Toolbar
Managing the Folder Tree
Editing Templates
Executing Templates
Working with the Output Window

What is Template Explorer?

The Template Explorer, also known as CodeSmith Generator Explorer, provides an easy interface for organizing and executing CodeSmith
Generator templates. Just as Windows Explorer sorts your files into folders, Template Explorer sorts templates into folders to make it easier to
find the templates that you want to work with.

The Template Explorer Toolbar

The Template Explorer Toolbar includes the following buttons:

 Clicking this button will open a Browse for Folder dialog box that lets you select any existing folder onCreate a template folder shortcut:
your computer. Click OK to add a shortcut to the selected folder as a top-level node in Template Explorer. When you install CodeSmith Generator,
Template Explorer is pre-populated with a single shortcut to the folder in your installation.Sample Templates

 By default, CodeSmith Generator Explorer (which hosts Template Explorer) behaves as a normalToggle Top Most Window Mode:
window that can be overlaid by other windows. If you select this button, Template Explorer will float on top of all other windows, remaining
permanently visible even if another window that would otherwise hide it has the focus. This is especially useful when you want to generate code
by dragging and dropping templates from Template Explorer to any application that supports dropping text.

 This button displays the version and licensing information for your copy of CodeSmith Generator.About CodeSmith:

Managing the Folder Tree

Folders may contain subfolders, templates, or both. At any time, one node in the folder tree will be selected. The selected node is indicated by a
highlight. In the screenshot below, the CSLA QuickStart template is selected. You can select a node by clicking on it with the mouse.

You can also move the selection by using the up or down arrow keys, or by typing the first letter of the name of the node.

A folder that can be expanded as indicated by a arrow sign to its left. To expand a folder, click the plus sign, or double-click the folder or its name,
or select the folder and click the right arrow or the plus sign on the numeric keypad. A folder that can be collapsed is indicated by a darkened
arrow sign to its left. To collapse a folder, click the arrow sign, or double-click the folder or its name, or select the folder and click the left arrow or
the minus sign on the numeric keypad.

You can perform a variety of other operations from the CodeSmith Generator Explorer context menus. These menus differ depending on which
node you right-click on.

All of your existing Windows Explorer context menu items (E.G., Delete, Rename...) will also be displayed in these context
menu's.

You can open a template folder in Windows Explorer by right-clicking on a folder and selecting the Open context menu item.

Context Menu for a Folder

Right-clicking on a folder will bring up a shortcut menu with the following choices:

New
CodeSmith Generator Template (CSharp): Creates a new template using CSharp as its code-behind language.

 CodeSmith Generator Template (Visual Basic): Creates a new template using Visual Basic as its code-behind language.
CodeSmith Generator Project: Creates a new file.CodeSmith Generator Project
CodeSmith Generator map: Creates a new blank file.CodeSmith Generator Map
File: Creates a new empty file. By default the file will have a .txt extension.
Folder: Creates a new sub-folder.

If you are right-clicking on a template folder shortcut (top-level folder in the tree) the following shortcut menu items will also be displayed:

Remove Shortcut. Deletes this folder shortcut from CodeSmith Explorer. This does not delete the underlying files from your hard drive.

Include Subfolders. When checked, CodeSmith Generator Explorer will also display subfolders of the target folder. Otherwise, it will only
display templates in the target folder of the shortcut itself.

Context Menu for a Template

Right-clicking on a template brings up a shortcut menu with the following choices:

Execute. Execute the template.
Edit. Open the template for editing.

Editing Templates

To edit a template, right-click the template in Template Explorer or Window Explorer and select Edit.

This will open the template in the default . Template Explorer will use an existing editor session if possible, otherwise it will launchtemplate editor
a new editor session.

Executing Templates

To execute a template from Template Explorer, double-click the template, or right-click the template and select Execute. You can also drag the
template from Template Explorer and drop it on any application that supports drag-and-drop to generate code at the location where you dropped
the template. Any of these actions will open the template's property sheet.

The template's property sheet shows you all of the properties that you can set for this template. Properties can be required or optional. You need
to supply values for all required properties before CodeSmith Generator can generate the code for you. Depending on how a property is defined in
the template, you may be able to type in an arbitrary value, select a value from a predefined list, or choose a value by navigating to a dialog box
from a builder button within the property sheet. Properties may also have default values. As you select each property, a description will appear at
the bottom of the property sheet to tell you more about that property.

In the screenshot above, the user has selected the SourceDatabase property, and the description indicates that this property specifies the
Database that the documentation will be created for.

With the SourceDatabase property selected, the right side of the property sheet shows the builder button (with three dots) as shown highlighted in
green. Clicking this button will open a separate dialog box (in this case, a dialog box supplied by CodeSmith Generator's own SchemaExplorer
 metadata extension) to help you pick a value for this property.

When you have finished setting properties for the template, you're ready to generate code. To do this, click the Generate button at the bottom of

the template's property sheet. CodeSmith Generator will take the property values that you entered and combine them with the template to create
the code, and display it in an or output it to a specific directory. In this case the code will be generated to the folder specified inOutput Window
the OutputDirectory property.

Click here to learn about the property sheet toolbar.

Advanced: Using a CodeSmith Generator Project to Execute CodeSmith Templates from Anywhere

Working with the Output Window

Template Explorer will automatically display an Output Window when you click the Generate button. The Output Windows' contents can be
modified at any time which allows you to make changes anytime to the document.

The output panel has its own toolbar with two buttons.

 Copies the current document to the Windows clipboard.Copy to Clipboard:

 Opens a Save As dialog box to let you save the current document to a new file on your hard drive.Save to File:

Using the Template Editor

The Generator Template Editor provides a complete integrated development environment (IDE) for CodeSmith Generator templates. You can use
Generator Template Editor to edit, compile, and run CodeSmith Generator templates. The Generator Template Editor includes features designed
to make building and debugging templates easier.

The Template Editor offers a superset of the functionality of . When you just want to execute templates and generate code,Template Explorer
you'll find it's faster to use Template Explorer to get your work done. But when you have templates under active development, Template
Editor should be your tool of choice.

This section will cover the following topics:

Template Editor User Interface
Template Editor Features
Building, Running, and Compiling Templates
Customizing CodeSmith Generator

Template Editor User Interface

The Generator Template Editor user interface includes a number of separate elements as shown below, each with its own purpose. The following
document will step you through the different elements.

User interface elements

The Template Windows(Template Document, Generated Document), Template Explorer, Properties Window, and Output Window can be docked
to any side of the template documents (shown in green below) or floating. Docked windows can also be set to auto-hide by clicking on the pin
button in the upper right hand side of the window. When you hover the mouse over an auto-hide window, it "slides out" to become fully visible,
covering other user interface elements. Multiple floating windows can be docked to one another.

Generator menu

The Generator menu is located at the top of the Template Editor and is highlighted in . This menu allows you to display additional userlight blue
interface elements like , , , , , about dialog, errorSchema Explorer Template Explorer Map Editor manage data sources ActiveSnippet configuration
window and much more.

Template Editor toolbar

The is located at the top of the Template Editor and is highlighted in . This toolbar allows you to quickly generate orTemplate Editor toolbar red
build a template.

Template Documents

Template documents refer to a document window that consists of a specific function. Here is a general overview of the various template document
types:

Template document: A template document gives you the ability to edit a template. A template document is highlighted in green below.
Click to learn more about the template document.here
Generated document: A generated document shows you the generated template content. Click to learn more about the generatedhere
document.

Template Explorer

Template Explorer is deeply integrated into the Template Editor allowing for quick access to all of your existing templates. You can double click on
a template to edit the template in the Template Editor and much more. The Template Explorer is highlighted above in yellow.

Properties window

The lets you view and edit the property settings for the current template, similar to the property sheet you can get by invokingproperties window
Execute from Template Explorer. The properties window is highlighted above in orange.

Output window

The is used by CodeSmith Generator to send status messages to you. The properties window is highlighted above in purple.output window

Error window

The is used by CodeSmith Generator to display template document errors or warnings that occurred while editing or compiling.error window

Template Editor Toolbar

The Template Editor Toolbar is and can be seen below.located at the top of the Template Editor

This toolbar is only shown when a Template Document has focus.

Toolbar Actions

The toolbar contains the following actions:

 : Clicking this button compiles the current template. The will show the results of the build operation.Build Output window

You can also build a template by pressing F6.

 : Clicking this button executes the current template, using values from the together with the templateGenerate Properties window
to create the generated code. The generated code will be displayed in the once this operation is complete.Output tab

You can also build a template by pressing F5.

Template Documents

Template documents refer to a document window that consists of a specific function. Template documents allow you to edit CodeSmith
Generator templates, as well as to view the generated code from templates. Here is a general overview of the various template document types:

Template document: A template document gives you the ability to edit a template. A template document is highlighted in green below.
Click to learn more about the template document.here
Generated document: A generated document shows you the generated template content. Click to learn more about the generatedhere
document.

You can have multiple documents open at the same time in the Template Editor. You can switch between documents by clicking on a documents
tab. A documents tab is located at the top of a documents' design surface as highlighted in green below.

In the screenshot above, a template document is displayed on the left and a generated document is shown on the right.

Template Document

The template document is the editing surface of the Template Editor. A template document consists of the template source code.

http://docs.codesmithtools.com/display/Generator/The+Output+Tab

Generated Document

The generated document displays the generated code produced by combining the template with the property values entered by the user in the
. The generated document will be displayed after you generate a template. Properties window

The generated document will not be shown if the templates OutputType attribute value is set to .CodeTemplate Directive None

The Properties Window

The Properties window lets you view and edit the property settings for the current template. It is similar to the property sheet you can get by
invoking Execute from .Template Explorer

You can navigate to the Properties window by selecting Properties Window from the View menu or by pressing F4.

Before you can generate code from a template, you must supply values for all of the non-optional properties in the Properties window.

One of the features of CodeSmith Generator is the ability to cache property set values for each template you open. This feature gives the ability to
persist property set values from one Generator session to the next for that particular template. This includes when you change a template,
recompile a template, close and re-open Generator.

You can toggle the availability of by using the Enable Property Persistence checkbox in the Property Persistence Options
.dialog

Click to learn how to set property values.here

Property Sheet Toolbar

The Template Explorer property sheet toolbar includes the following buttons:

 Categorize: By default, the properties in the property sheet are sorted by categories. If you'd prefer them in a single alphabetical list, click
the Alphabetic toolbar button.

 Sorts the properties in the property sheet alphabetically by property name.Alphabetical:

 Opens a Save As dialog box to let you save the settings from the property sheet as a file.Save Property Set: CodeSmith Generator Project

 Opens a File Open dialog box to let you select an existing file. The settings from the XMLOpen Property Set: CodeSmith Generator Project
file will be loaded into the property sheet.

 Copies the settings from the property sheet into a and to the Windows clipboard as anCopy Property Set: CodeSmith Generator Project

XML file. CodeSmith Project files can be used as input to the .CodeSmith Generator Console application

 Restores the property values from the file (the Xml file from Copy Property Set) stored inPaste Property Set: CodeSmith Generator Project
the Windows clipboard.

 Refreshes the values of the property sheet and also clears any cached values like cached database information.Refresh Property Values:

 Resets the property values to the default values.Reset Properties to Default:

 You can also Filter the properties that are displayed in the property sheet by typing in the name of the propertyFilter:
or properties you are looking for. For example, if you are looking for a property that starts with 'a' or contains the letter 'a', just type 'a' into this filter
box.

To clear any cached database schema information press the Refresh Property Values button at the top of the property
sheet.

The Output Window

The Output window is used by CodeSmith Generator to send status messages to you.

The combo box at the top of the Output window can be used to switch between the Build pane and the Debug pane.

The Error Window

The error window allows you to view any template document errors or warnings that occurred while editing or compiling.

The image above contains a and the error window. The error window contains errors for the MultipleCodeTemplates.csttemplate document
template document. The error window can show errors, warnings or messages.

On the first line of the error window, there is an error for a duplicate property directive declaration. The line specifies the file that the error resides
in as well as the line and column of the error. You can double-click any where on this line to jump you to the place of the error.

The Template Editor also helps you identify errors by placing a red squiggles under each error. You can hover over the squiggle to bring up the
error information as shown above.

Template Editor Features

Template Editor is a modern, full-featured IDE with advanced capabilities that rival those of Visual Studio .NET. Features of the editor include:

Themes and Syntax Highlighting
Template Navigation
Bracket highlighting
Documentation Comment Editing
Find and Replace
Incremental search
Keyboard shortcuts
Line Modification Markers
Outlining
Statement completion
Tab groups

Bracket Highlighting

When the cursor is in front of a bracket, the editor will outline both that bracket and the corresponding open or close bracket:

This works with parentheses, square brackets, and curly braces.

You can move the cursor quickly to the corresponding bracket by typing Ctrl+].

Documentation Comment Editing

The Template Editor allows you to easily document your template code. As an added benefit, the documentation you provide will show up in
. This will allow you to quickly see what a method, property, or argument does without inspecting the code,Statement Completion and Quick Info

therefore saving you valuable time.

Example

In this example we are going to assume that we are editing an existing template that already has some methods defined. We will come across a
method that we don't know what its responsibility is. We will then investigate and add some documentation for future reference.

Inspecting the code

We are inspecting existing code and have no idea what the WriteToLog<T> method does (as shown in the image below). We decide to hover
over the method to see any comments via .Quick Info

With the lack of documentation we have no idea what the method does. So we do a Go To Definition on WriteToLog and inspect the code.

Adding documentation

Now that we know what the method does, let's add some documentation so anyone using the templates in the future will know what this method
does.

When typing (CSharp) or (Visual Basic) immediately before a type or member, stub documentation comments will automatically be/// '''
inserted.

We will now fill out the summary section of the documentation, so others will know what this method does.

As Enter is pressed within a documentation comment, (C#) or (VB) are auto-inserted on the next line for continuation/// '''
of the comment.

Now, when we hover over the WriteToLog<T> method we are prompted with a description!

Find and Replace

The Find and Replace dialog allows you to quickly find and replace text inside of a template.

Opening the Find and Replace dialog

You can open the Find and Replace dialog by pressing Ctrl+F or Ctrl+H.

Find and Replace Options

The following options are available for

Find what: Enter the text that you wish to find.

Replace with: Enter the text that you wish to replace the found text.

Look in: Allows you to configure where you want to search. To search only current
document, select Current Document from the Look in drop down menu.

Find Next: Click this button to find the next match in the file.

Replace: Click this button to replace the next match in the file.

Replace All: Click this button to replace all matches in the file.

Find Options

Match case: To limit your search to an exact case match, check the Match case
checkbox. Otherwise, text will match regardless of case.

Match whole word: To limit your search to whole word matches, check the Match
whole word checkbox. Otherwise, text will match in partial words.

Search up: To search from the current cursor position to the top of the file, check the
Search up checkbox. Otherwise, the search will be from the current cursor position to
the end of the file.

Use

This options allows you to search by regular expressions or by using a wildcard. See
below for more information.

Find using a Regular Expression

To search using regular expressions, check the check box and select Use Regular
. You can use the following regular expression syntax:Expressions

. Any single character

* Zero or more

+ One or more

^ Beginning of line

$ End of line

\b Word boundary

\s White space

\n Line break

[] Any one character in the set

[^] Any one character not in the set

| Or

\ Escape special character

Find using a Wildcard

To search using wildcards, check the check box and select . You can use the following wildcard syntax:Use Wildcards

* Zero or more of any character

? Any one character

Any single digit

[] Any one character in the set

[^] Any one character not in the set

Incremental Search

Incremental search can be activated from the Advanced submenu of the Edit menu, or by pressing Ctrl+I (for forward incremental search) or
Ctrl+Shift+I (for backward incremental search). The cursor icon changes to a binocular with an arrow indicating the search direction.

Begin typing the text that you want to search for. As you type, the editor highlights the first occurrence that matches the text. As you continue
typing, the editor moves to the next match and highlights it. If no matches are available, the highlight will stop moving.

During incremental search, the following special keys are active:

Key Meaning

Esc Stop searching

Backspace Remove the last character from the search string

Ctrl+Shift+I Change the search direction

Ctrl+I Move to the next match

Keyboard Shortcuts

The Template Editor supports the following keyboard shortcuts:

Key Command

Ctrl+Enter Insert blank line above current line

Ctrl+Del Delete next word

Ctrl+Backspace Delete previous word

Ctrl+C, Ctrl+Ins Copy

Ctrl+X, Shift+Del Cut

Ctrl+V, Shift+Ins Paste

Ctrl+Z Undo

Ctrl+Y, Ctrl+Shift+Z Redo

Ctrl+Down Scroll down

Ctrl+Up Scroll up

Ctrl+Left Word left

Ctrl+Right Word right

Ctrl+PgUp Move to top of window

Ctrl+PgDn Move to bottom of window

Ctrl+} Move to matching bracket

Tab Indent line

Shift+Tab Outdent line

Shift+Down Select down

Shift+Up Select up

Shift+Right Select right

Shift+Left Select left

Ctrl+Shift+Right Select next word

Ctrl+Shift+Left Select previous word

Shift+Home Select to start of line

Shift+End Select to end of line

Ctrl+Shift+Home Select to start of document

Ctrl+Shift+End Select to end of document

Shift+PgUp Select page up

Shift+PgDn Select page down

Ctrl+Shift+PgUp Select to top of window

Ctrl+Shift+PgDn Select to bottom of window

Ctrl+A Select all

Ctrl+Shift+] Select to matching bracket

Insert Toggle overwrite mode

Ctrl+O Open file

Ctrl+S Save file

Ctrl+Shift+S Save all files

Ctrl+F4 Close file

Ctrl+P Print

Ctrl+G Go to line

Ctrl+U Make lowercase

Ctrl+Shift+U Make uppercase

Ctrl+I Incremental search

Ctrl+Shift+I Backward incremental search

Ctrl+Shift+K Toggle bookmark

Ctrl+Shift+N Next bookmark

Ctrl+Shift+P Previous bookmark

Ctrl+Shift+L Clear bookmarks

Ctrl+M Toggle outline expansion

Ctrl+Shift+M Toggle template code expansion

Ctrl+Shift+C Insert code block

Ctrl+Shift+V Inverted code block

Ctrl+Shift+W Write block

Ctrl+Shift+Q Script block

F7 View code

F8 View output

Ctrl+Shift+X View Template Explorer

Ctrl+Shift+D View Schema Explorer

F4 View Properties Window

Ctrl+Shift+O View Output Window

Ctrl+Shift+R Show Web browser

Ctrl+Shift+B Build

F5 Run

F9 Copy output

F10 Save output

F1 Help

Line Modification Markers

Lines of code that have been edited during the current session are indicated with a yellow line in the left margin of the editor:

When you save the file, the yellow markers turn green. Thus at any time, yellow markers show changed but unsaved lines of code, and green
markers show changes in this session that have been saved.

Outlining

Outlining provides a way to hide detail in your code until you want it.

Outlining in the Template Editor is of two types: automatic and manual. By default, Generator automatically creates outline blocks for every script
block, property, enumeration, and object in your code. You can disable automatic outlining from the Outlining submenu of the Edit menu. You can
also create manual outline blocks by inserting #region and #endregion (or in VB, #region and #end region) lines in your code.

To collapse an outline block, click the minus sign at the left margin of the block or place the cursor in the block and press Ctrl+M. To expand an
outline block, click the plus sign at the left margin of the block or place the cursor in the block and press Ctrl+M.

In this code, Template Editor has automatically created outline blocks for the script block and the function, and the developer has added a manual
outline with a region:

Clicking the minus sign to the left of the script block collapses the entire outline, and shows the script block grayed out. If you hover the mouse
over the collapsed outline, Template Editor will display a tooltip with the first few lines of the code contained within the collapsed block:

Expanding the script block and then collapsing the region displays the text after the #region keyword:

Expanding the region and collapsing the function displays the function name.

Statement Completion

Statement completion is very similar to the IntelliSense feature of Visual Studio. With Statement Completion, Template Editor prompts you with
identifier names as you type.

You can bring up the completion lists at any time within a code block by pressing 'Ctrl+Space'.

The dropdown list of identifiers appear as soon as you type the dot after an object name. To select a identifier, click it with the mouse or select it
with the arrow keys or by typing enough letters to uniquely identity it and then type a space or other separator character to auto-complete.

Statement completion depends on reflection to gather the information that it presents. This means that your template must
compile successfully for statement completion to work on types defined in the template. Types defined in an external assembly
will show up in the statement completion lists whether the current template compiles or not.

Quick Info

Automated quick info tips show whenever the mouse is hovered over words such as identifiers. The quick info tips display detailed information
about the related type, member, variable, etc. Similar to parameter info tips, all information is presented using rich text formatting.

Parameter Info

Automated parameter info tips show whenever typing an invocation . The tips show detailed information about the invoked(E.G., a method call)
member along with details about the current argument being typed. In the case where the invoked member has multiple overloads, arrows show
on the popup and allow toggling between all the available overloads.

As with quick info, parameter info can handle rich-formatted content display using HTML-like markup tags. Colors and font weights or styles can
be used to bring attention to portions of the info tip. The screenshot above shows the font weights bringing attention out to the current parameter

.seed

Multiple signature options can be displayed in a single parameter info tip. In those scenarios, arrows automatically appear that can be clicked.
Alternatively the end user can use the up/down arrow keys to switch between options.

Anonymous Types

In previous versions of CodeSmith Generator there was no support for anonymous types or extension methods. The sample below will show off
an example of Anonymous Type support.

In this screenshot, we have implicitly declared a variable anonymousType as an anonymous type. The anonymous type's properties are
initialized using a variable (numbers) as well as a string constant ("Blake"). Hovering over the anonymousType variable will display quick info,
which reveals anonymousType as an anonymous type.

We can bring up the statement completion list by typing period after our variable. This will display a list that contains all of the members of the
variable . anonymousType The two properties we declared (Numbers and Name) in the anonymous type's creation expression appear in the list.
You can see it has correctly assigned property names and their types.

Tab Groups and Split Windows

The Template Editor provides you with two ways to edit in multiple locations at the same time. Tab groups allow you to open two or more files for
editing. Split windows allow you to have two editing panes open in to the same file at the same time.

Tab Groups

To create a tab group, select New Horizontal Tab Group or New Vertical Tab Group from the Window menu. Alternatively, click and hold the
mouse cursor on an existing tab at the top of an open document window, and drag the tab down into the code-editing area. When you drop the
tab, the shortcut menu will offer you the choice of creating a new vertical tab group or a new horizontal tab group. In any case, the active tab when
you perform the operation will become the first tab in the new tab group.

Vertical Tab Groups

Horizontal Tab Groups

You can move a tab from one tab group to another tab group by dragging and dropping the tab. You can also create additional tab groups by
repeating the process that creating the initial tab group. However, all tab groups must be of the same type; you cannot mix horizontal and vertical
tab groups. If you close or remove the last tab in a tab group, Template Editor will eliminate the tab group.

Split Windows

To create a split window grab the splitter handle at the top of the vertical or horizontal scroll bar (highlighted in green in the image below) with the
mouse and drag it downwards. The result will be a single window with two panes, both of which open on the same file:

You can scroll and edit in the two panes of a split window independently. Because the two panes are both views into the same underlying file, any
changes in one pane are immediately reflected in the other pane.

Template Navigation

The Go To Definition, Navigation bar, View Code features makes navigating around your template quick and easy.

Navigation bar

The Navigation bar is located at the top of the and displays the types and members in the current template. Types are alwaystemplate document
shown in the left drop down menu and members are always shown in the right drop down menu.

When you select a type from the drop down, the caret is placed on the first line of the type. The same is also true when you select a member. The
drop down boxes are immediately updated to reflect the current location of the caret.

Go To Definition

This feature will allow you to right click on any identifier (E.G., Classes, Methods, Properties and Variables) in your template and quickly navigate
to where they were defined. This eliminates the need to use Find or scrolling around your template to navigate to find a property or method you
were looking for.

To use Go To Definition, just right click on an identifier or press F12.

View Code

This feature allows you to open a code behind or partial class that is defined via a . You can quickly navigate to the CodeTemplates Src attribute
 or partial class without opening up or cluttering the Template Editor.code behind Template Explorer

To use View Code, just right click anywhere in the or press F7.template document

Go To Line

This feature will allow you to jump to any line in the . This is very useful when you are debugging an error and you know thetemplate document
exact line number you wish to navigate to.

To use Go To Line, select Go To from the Edit menu or press Ctrl+G.

Themes and Syntax Highlighting

Syntax Highlighting

The Template Editor support syntax highlighting for many different language types like C, C++, CSharp, CSS, Visual Basic, Html, Java,
JavaScript, Perl, SQL, Xml and many more.

You can see the and in the above screenshot. As you can see the generated document (Default.html) istemplate document generated document
being shown in the html designer. This allows you to see the generated documents design view right after you generate!

The Template Editor also supports copying your Syntax Highlighting color schemes to RTF and HTML.

When you copy any part of a template document to the Windows Clipboard, an HTML and RTF copy is also placed in the clipboard. This means
that when you paste into an Rich Text box, your formatting will also be copied as shown above.

Themes

The Template Editor also supports themes. Template Editor uses the configuration settings to determine what colors to use.

1.
2.
3.
4.
5.
6.

Building, Running, and Compiling Templates

CodeSmith Generator allows you to build, run, and compile your templates.

Building Templates

To compile the current template, select Build from the Build menu, or press F6, or press Ctrl+Shift+B, or click the Build button on the . The toolbar
 will show the results of the build operation.Output window

Running Templates

To run the current template, select Run from the Debug menu, or press F5, or click the Run button on the . This will execute the currenttoolbar
template, using values from the together with the template to create the generated code. At the end of the Run operation,Properties window
CodeSmith Generator will display the generated code in a .generated document

Compiling Templates

 You can compile a template to an assembly (.dll file), which you can then reference from any .NET project. To compile a template to an assembly
follow the steps below.

Create or use an existing .NET 4.0 class library project.
Add your to the project via the add new or add existing. You can also add the template as a linked item.master template
Ensure the ClassName and Namespace attributes on the are set properly on your template.CodeTemplate Directive
Right click the template you added to the project and select properties.
Once the properties window is open, set the templates CustomTool to TemplateSourceGenerator.
Build the project you created in step 1

Customizing CodeSmith Generator

There are several reasons you might want to customize CodeSmith Generator. You might want to reset file associations or change the Sample
Directory location. You can configure all of CodeSmith Generators settings through the Options dialog.

Opening the Options dialog.

You can open the Options dialog from the Generator menu. You can also open up the Options dialog by launching the csconfig.exe executable
located in the CodeSmith Generator Program Files folder (C:\Program Files\CodeSmith\<VERSION>).

Configuring Settings

All of the configuration settings are grouped into sections and are displayed in nodes on the left hand side as shown in the image below.

In the above image, the Engine node is selected and allows you to configure various settings like the location of the Sample Directory
(CodeSmithSampleDirectory). To close the Options dialog, press OK to apply the changes or Cancel to ignore the changes.

You may need to restart CodeSmith Generator after changing property values for the changes to take effect.

Some properties values may be persisted in real time and will not be rolled back when Cancel is clicked.

Using Schema Explorer

Schema Explorer provides an easy and graphical way to explore the schema of databases. This gives you the ability to manage extended
 or retrieve the names of tables, views, commands, and their components.properties

Opening Schema Explorer

You can open Schema Explorer by selecting from the Generator menu.Schema Explorer

Adding a new database connection

The following steps will show you how to add a new database to Schema Explorer.

The first step is to click the Manage Data Sources button as highlighted in green.

This will open the Data Source Manager dialog box.

The Data Source Manager allows you to Add/Edit or Remove existing Databases.

Next, click the Add button to open the Data Source dialog box.

The Test button allows you to test the defined Connection String.

Next, enter a name for the new data source, select an appropriate provider, and enter a connection string.

If a connection string designer is available, the ellipsis button (...) highlighted above in green will be enabled.

The above image shows the SQL Server Connection String Editor.

Finally, you can click the OK button to create the newly defined database and click the close button to close the Data Source Manager.

Managing Extended Properties

Managing your RDBMS' Extended Properties has never been easier. You can now Add/Edit, or Manage a new schema extended property directly
inside of Schema Explorer.

This is a very powerful way to add custom meta-data to the already feature rich meta-data that Schema Explorer provides. You can now easily
add database object descriptions, or anything that will help you drive your generation process using a powerful storage on the database server.

Click for more information on using Extended Properties in Templates.here

Managing Extended Properties

To manage your Extended Properties, simply open up the Schema Explorer window.

Once the Schema Explorer window is open, continue to expand nodes until you find the Schema Object you are looking for. In the image above
selected the AccountID Column for editing. To bring up the , just Right-Click on a Schema Object and select Extended Property Editor Extended

.Properties

Items beginning with " " and " " are read-only and are used for CodeSmith's Generator meta-data.CS_ MS_

Removing an Extended Property value

You can remove any Extended Property by right clicking a row and selecting delete.

Editing an Extended Property value

You can edit an Extended Property value that is not marked as a read-only by editing the rows Value field.

Removing an Extended Property value

To add a new row just start typing below the last row of data in the Name column.

Saving Extended Property Values

To save your Extended Property values, just click on the button. To ignore your changes click on the Cancel button.OK

Some Schema Providers may not implement this feature and throw a Not Supported Exception when retrieving or saving
Extended Property values.

Using the Map Editor
CodeSmith Generator Maps allow developers to reduce the amount of plumbing code in their templates and increase the readability and
reusability at the same time. CodeSmith Generator Maps also provide an easy way to manage dictionary maps for doing word translation lookups
in code. This used to be a a frequent and cumbersome challenge that a template writer must face when trying to map types from disparate
systems.

Map Editor

Generator includes a Map Editor that makes it very easy to create and manage your own CodeSmith Generator Map lists. Generator also ships
several of the most common mapping scenarios and it's output is in a familiar XML format allowing the developer community to contribute and
share maps they create as well through a new at the .map file gallery CodeSmith community

Opening the Map Editor

You can open the Map Editor from the Generator menu.

User interface elements

The section below will walk you through the various user interface elements of the Map Editor.

 Name: The map name is also the file name so consider choosing a name that is fairly descriptive of what
the map's intent is. This drop down allows you to edit and view previously defined map files.

If you select (New File) then a new mapping file will be created.

When Generator attempts to discover a map by name, it first looks in the configuration directories, the template directories and
you can also give it a relative or full path.

http://community.codesmithtools.com/CodeSmith/m/maps/default.aspx
http://community.codesmithtools.com/

 Clicking this button allows you to create a new mapping file.New File:

 Clicking this button will open a Windows Explorer Browse dialog and let you pick a mapping file that exists anywhere on yourOpen File:
hard drive.

 Creates a duplicate map file of the currently selected map file.Save Copy:

Description: A description field of what the maps intent is for.

Return Key: The return key check box indicates whether or not to return the original key from the map if the key is not found within the map. This
is important because there can be many situations where there might not be an entry for the key and it's value, but you would still like the key
returned instead of null.

In the image to the above, it's converting a fully qualified type to it's C# equivalent keyword. In cases where one doesn't exist,
such as System.DateTime or System.Guid, you could still use the original key, System.DateTime, which would be completely
valid.

Case Sensitive: The Case sensitive check box determines whether or not to search for the key and consider case sensitivity. Often, word
dictionaries do not require case sensitivity since most use keys that are unique by name.

Find More: Launches a browser session to browse the online gallery of community collaborated maps.

Click to learn more about developing using a CodeSmith Generator Map.here

Developing using a Generator Map
While developing templates, a common scenario developers face is accessing a lookup list based on some sort of information. This document
will cover the definition of a Map Directive and then will walk you through an example of using a Map file.

The Map Directive

Using a Map directive is quite easy and very flexible, all you need to do is define a Map Directive. For example, this map directive defines a
template property of type MapCollection that is named CSharpAlias. This CSharpAlias property will be populated with the mapping file
values declared in the System-CSharpAlias.csmap.

<%@ Map Name="CSharpAlias" Src="System-CSharpAlias" Description="System to C# Type Map" %>

The System-CSharpAlias.csmap is resolved by looking in the current template directory as well as Generator Maps folder
(Documents\CodeSmith Generator\Maps)

Mapping files are resolved by looking in the current template directory as well as Generator Maps folder
(Documents\CodeSmith Generator\Maps).

Map Directive Attributes

The Map directive has five possible attributes. The Name and Src attributes are required, and the other attributes are optional.

Name

The Name attribute references name of the map specified to use in code.

Src

The Src attribute defines the file name of the map file or the file path to the map file.

Adding the extension name is not required.

Description

The Description attribute supplies descriptive text to be displayed at the bottom of the property sheet when this property is selected.

Reverse

When you require to translate the lookup back to the key from the value, you can reverse the map. You simply load the collection using the
reverse overloaded method.

Default

The Default attribute defines the default action to take place when a key is not found. If set to True, a default value will be returned when the
key is not found.

API Usage

You can also use CodeSmith Generator Maps without using a Map Directive. This means that you are creating and populating a new
MapCollection instance through code. You can interface with a map from code simply by loading the map by name.

Mapping files are resolved by looking in the current template directory as well as Generator Maps folder
(Documents\CodeSmith Generator\Maps).

Common API Usage

This mimics the usage of the mapping used in the example below which uses a declarative model.

MapCollection list = MapCollection.Load("System-CSharpAlias.csmap");
list.ReturnKeyWhenNotFound = true;
Response.Write(list[column.SystemType.FullName]);

Reverse Map

Call the overloaded Load method when requiring to load the map with the key value pairs swapped.

MapCollection list = MapCollection.Load(string mapName, bool reverseMap);
Debug.Assert(list[myValue] == myKey);

See the CodeSmith Generator API help for more API Coverage.

Example

A common example is a mapping between CLR data types and SQL Server data types. Before CodeSmith Generator Maps, this functionality
would have been accomplished by writing a method with a long switch/Select Case statement as shown in the example below.

public string GetFrameworkType(DataObjectBase column)
{
 switch(column.DataType)
 {
 case DbType.AnsiString:
 case DbType.AnsiStringFixedLength:
 case DbType.String:
 case DbType.StringFixedLength:
 return "String";

 case DbType.Binary:
 return "Byte[]";

 case DbType.Boolean:
 return "Boolean";

 case DbType.Byte:
 return "Byte";

 case DbType.Currency:
 case DbType.Decimal:
 case DbType.VarNumeric:
 return "Decimal";
 }
}

Using CodeSmith Generator maps reduces the amount of code needed for lookups and also allows you to share mapping logic between
templates. We can convert this code into a mapping file by creating a new map file.

Creating the map file

The first step is to and create a new map file by .open the Map Editor clicking on the New File button

Populating the map file

Next, we will start by filling out the name and description of our map file along with entering in the values defined above. The end result should
look something like this:

This mapping file ships with CodeSmith Generator.

Updating your template to use a map

We can start by removing the switch/Select Case statement defined above. Doing so will cause build errors (after building the template) any
place where this method was being called. This allows us to use the Error Window to navigate to the usages of the previous code and update
the usages to use a mapping file.

Adding a Map Directive

Using a map is quite easy and very flexible. You simply register the map using the Map Directive (also highlighted in green in the image below).

<%@ Map Name="CSharpAlias" Src="System-CSharpAlias" Description="System to C# Type Map" %>

Updating usages

Once the map has been registered, you simply reference the map and pass it the value similar to using another Collection class.

As you can see on Line 13 we use the mapping file by using the map name (E.G.,) as defined in the Map Directive on line 7.CSharpAlias
Previously the code on Line 13 would have called the GetFrameworkType(column) method.

1.
2.
3.

Using CodeSmith Generator Projects
CodeSmith Generator Projects manage groups of CodeSmith Generator templates and their outputs all in a single CodeSmith
Generator Project file (.csp). CodeSmith Generator Projects are files that enable you to run an entire generation process at anytime in a
simplistic manner from many different environments.

About

A CodeSmith Generator Project file uses a .csp file windows extension, and stores XML metadata about your CodeSmith Generator Project.

Learn more by reading .Anatomy of a Project File

A CodeSmith Generator Project file can be generated or by right clicking on on a CodeSmith Generator Project File (.csp). configured

Generation Capabilities

CodeSmith Generator Project files enable the management and execution of a generation process in many environments.

Windows Explorer and Template Explorer

Managing a CodeSmith Generator Project right from Windows Explorer is simple and doesn't require you to use CodeSmith Generator to
manage a project. Options are available through the right-click context menu in your CodeSmith Generator Project file (.csp).
The menu options include:

Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.
Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.
Add Outputs

Learn more by reading .Using CodeSmith Generator Project from Windows Explorer

Command-Line

You can Generate Outputs of a CodeSmith Generator Project in the command line by using the using the CodeSmith Generator Console
. You would simply call:Application

cs MyCodeSmithProject.csp

http://docs.codesmithtools.com/display/Generator/CodeSmith+Project+Manage+Outputs

1.
2.
3.
4.

Visual Studio

The tight integration with Visual Studio allows you to fully manage any right from Visual Studio! This means youCodeSmith Generator Project
can maintain a high Code Generation presence right within Visual Studio and not have to switch applications to run code generation.

Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.
Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.
Add Outputs
Output Options - Only available in Visual Studio, and allows you to control the output options after generation.

Learn more by reading .using a CodeSmith Generator Project inside Visual Studio

MSBuild

You can create your own custom pre-generation build logic by utilizing the CodeSmith Generator Task within MSBuild. MSBuild tasks help
manage the build process within your Visual Studio projects.

There might be times when you need to customize some aspect of the generation process during it's consuming build process. During these
time you might have to call CodeSmith Generator from MSBuild using the CodeSmith Generator task that's shipped for you.

Learn more by reading .using a CodeSmith Generator Project from MSBuild

Manage Outputs

Managing your CodeSmith Generator Project is simple to do, and best of all, you don't have to be in CodeSmith
Generator to do it. That's why we've exposed the ability to manage your Generator Project File from just about
anywhere, Windows Explorer, and Visual Studio. Meaning whatever interface you're seeing the project file, you can
Add, Edit or Delete via the Manage Outputs dialog. Code Generation has never been easier.

You can right click on an output to bring up the menu shown above or double-click to edit.

In the following sections we will show you how to use the full power of Manage Outputs.

Configuring your Options

There are several options you have the ability to configure, initially, you need to add at least one Output.

Outputs
Window

Are the current configured Outputs for your CodeSmith Generator Project. If an output does not specify a CodeSmith
Generator template to use, the Output will use the Default Template. (depicted above)

Add
Button

Opens the Add Output Form so that you can add a new output with an existing template or use the default template. For more
information read the Add/Edit Outputs section below.

Edit
Button

Opens the Edit Output Form which you can edit the output options or template properties. For more information read the
Add/Edit Outputs section below.

Copy
Button

Creates a copy of a selected output. This is especially useful if you are creating many outputs that use the same template, but
use a single different piece of meta-data to differentiate from. You would then only have to change the one property for all of
the copied outputs.

Delete
Button

Deletes an Output from your CodeSmith Generator Project.

Generate
Selected
Button

Generates the output for the selected template.

Generate
Button

Begins the generation process for this CodeSmith Generator Project. This is the same as selecting Generate Output.

Project
Options
Button

Opens the dialog.Project Options

OK Button Persists all modifications that were made on the form.

Cancel
Button

Cancels any changes from the form and closes the window.

Add/Edit Outputs

To open the Edit Output dialog, you can click on the edit icon in the Manage Outputs toolbar or double click on an output listed in the Outputs list.

There are four panels that cover all of the options for configuring an Output. Below is the entire Add/Edit Output Form.

Choose a Template

If a Template has been configured from in the Main Manage Outputs screen, then you will see the template name listed under the Use Default
Template option. Otherwise, you will have a File Chooser control to select your template that you want the output to be generated from.

Choose an Output

Choosing an output requires you to name the Output file you are wanting to use. The default Output name is created by the template you are
using.

If you have a template that does not have an output, this field will be ignored.

Optional: Choose a Merge Strategy

If your template uses a , either InsertRegion or PreserveRegions, you would enter the pattern here.merge strategy

Configuring the Property Sheet

The right pane is a familiar property of the template you have chosen. You would fill in the necessary values for your template to run. The top
shaded yellow area shows the .property sheet options

Any Required fields missing will throw an error when you attempt to save the Output changes.

Project Options

The allows you to configure behavior for the project. Some of the settings include a defaultProject Options dialog
template, single or multiple file output, default properties and project variables.

Configuring the Project Options

To view a Project Options you must click on the Project Options button. This button is located in the Manage Outputs toolbar as highlighted in
green below.

Project Output

The project output option allow the selection between templates controlling output and all the templates output being merged into a single file.
When single file output is selected, you can add a header and footer to the output file.

Default Properties

You can configure default properties to use within your CodeSmith Generator Project. These properties are available to all of the templates
assigned within your CodeSmith Generator Project. These are especially useful to define properties that are fairly static in nature.

Variables

The CodeSmith Generator Project supports variables that can be used in the property sets. Variables are an easy way to have a common peace
of data that is stored in only one place.

When saving a CodeSmith Project in the Manage Output dialog, the CodeSmith Generator Project will automatically create variables for all the
unique connection strings in the project. This allows for easy updating of the connection string for complex projects.

Variable Usage

When using the Project Options dialog to edit variables, the variables will be placed in the property sets automatically when the project saves.
This is done by searching for all values that match the variables value and replacing it with the variable name. The reverse is done when a
project is loaded, all variable names are found and replaced with its value.

You can edit the CodeSmith Generator Project manually to place variables as well. The variable for format is its name surrounded by $(), ie,
$(ConnectionString1).

Sample Project File

<?xml version="1.0"?>
<codeSmith xmlns="http://www.codesmithtools.com/schema/csp.xsd">
 <singleOutput enabled="true" path="Data.cs" />
 <variables>
 <add key="ConnectionString1" value="Data Source=(local);Initial Catalog=PetShop;Integrated
Security=True" />
 <add key="ProviderType"
value="SchemaExplorer.SqlSchemaProvider,SchemaExplorer.SqlSchemaProvider" />
 </variables>
 <defaultProperties>
 <property name="DbmlFile">PetShop.dbml</property>
 </defaultProperties>
 <propertySets>
 <propertySet name="Dbml" template="CSharp\Dbml.cst">
 <property name="IncludeViews">False</property>
 <property name="IncludeFunctions">False</property>
 <property name="EntityBase">LinqEntityBase</property>
 <property name="DisableRenaming">False</property>
 <property name="SourceDatabase">
 <connectionString>$(ConnectionString1)</connectionString>
 <providerType>$(ProviderType)</providerType>
 </property>
 <property name="EntityNamespace">PetShop.Data</property>
 <property name="ContextNamespace">PetShop.Data</property>
 </propertySet>
 <propertySet name="Entities" template="CSharp\Entities.cst">
 <property name="IncludeDataContract">True</property>
 <property name="OutputDirectory">PetShop\PetShop.Data</property>
 </propertySet>
 </propertySets>
</codeSmith>

Using a Generator Project inside Visual Studio
The tight integration with Visual Studio allows you to fully manage any right from Visual Studio! This means youCodeSmith Generator Project

can maintain a high Code Generation presence right within Visual Studio and not have to switch applications to run code generation.

Creating a new CodeSmith Generator Project

To add a new CodeSmith Generator Project file to your Visual Studio Project, right click on a Project or folder inside of a project inside of Solution
Explorer. Then choose File > New Item from the context menu. This will open the Visual Studio New File Wizard. Next, you will want to select
CodeSmith Generator under the General Installed Templates node. Doing this will only show you the available CodeSmith Generator Item
Templates.

1.
2.
3.
4.

a.

b.

Finally, select and then select the button or double click on . Generator Project Open Generator Project

Managing a CodeSmith Generator Project From Visual Studio

To manage a CodeSmith Generator Project, you can use the Right-Click context menu of a CodeSmith Generator Project file from the Solution
Explorer tool window.

The Output Options sub menu include:

Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.
Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.
Add Outputs
Output Options - Only available in Visual Studio, and allows you to control the output options after generation.

Add Outputs To Project - Will take any outputs from your CodeSmith Generator Project and include them in your Visual Studio
project.
Hide Outputs - Will take any outputs of your CodeSmith Generator Project and make them child nodes, dependant on your
CodeSmith Generator Project file (shown in the image below). Hidden nodes can be collapsed, and since much of the time

4.

b.

c.

generated code shoudln't be touched, it's a great way to hide the temptation of other developers attempting to modify the
generated code.
Generate On Build - A menu driven way to have your templates use Active Generation. You can also specify the BuildAction
value in the property sheet of your CodeSmith Generator Project (see the Active Generation section for more information).

You can remove the CodeSmith Generator Visual Studio Project dependencies by turning off Generate On Build.

Active Generation

You can use ActiveGeneration quite easily in your Visual Studio projects now, simply by specifying the BuildAction of your CodeSmith
Generator Project.

Setting the in the properties of you CodeSmith Generator Project file in the Solution Explorer will cause yourBuildAction = "Generate"
entire generation process to occur prior to your project building. This means that any Outputs that you have in your CodeSmith Generator Project
will be generated and if you want, included in the Visual Studio project.

Example

We have a BusinessObject.csp CodeSmith Generator Project in our class library Visual Studio project. This CSP has 4 outputs, that generate
from the same BusinessObject.cst CodeSmith Generator template.

Order.cs
Product.cs
Profile.cs
Supplier.cs

Looking into the properties of the CodeSmith Generator Project, you can view the Build Action of the file, and there is an option to set it to
Generate on Build. Meaning every time you need to tweak your Database meta-data, XML Property meta-data, or CodeSmith
Generator template, the changes are picked up in your Visual Studio project the very next time you build.

This enables you to alleviate much of the frequent developer problems with making changes across all of your classes, during the development
process.

Output Window Generation Feedback

As you can see depicted in the image below, the business object was generated, and then the build process began. This is a very powerful
feature since it allows you to have strong Code Generation integration inside all of your projects in Visual Studio without having to switch to
Template Explorer.

Adding Files to Visual Studio Using DependentUpon Hierarchy

A new overload to the templates RenderToFile that will take a parent (DependentUpon) file. This will add metadata to the output file that Visual
Studio will use when adding the file to create the hierarchy.

To get your template to support this, you'll need to update the template to use the RenderToFile overload that takes a parent file. Next, add the
CodeSmith Generator Project to the Visual Studio project and Generate Outputs. CodeSmith Generator will automatically add the outputs to your

1.
2.
3.

Visual Studio project creating the hierarchy.

Sample Template Code

//Create Sub template using the Create method to automaticly wire everything up
EntityGeneratedClass entityClass = this.Create<EntityGeneratedClass>();
EntityEditableClass partialClass = this.Create<EntityEditableClass>();

string className = type.Name;

string parentFileName = className + ".cs";
parentFileName = Path.Combine(OutputDirectory, parentFileName);
//Output parent file
partialClass.RenderToFile(parentFileName, false);

string fileName = className + ".Generated.cs";
fileName = Path.Combine(OutputDirectory, fileName);
//Output child (dependent) file linking to parent
entityClass.RenderToFile(fileName, parentFileName, true);

Using Generator Project from Windows Explorer

A gives you the ability to control all aspects of your CodeSmith Generator project fromCodeSmith Generator Project
Windows Explorer, or . This type of flexibility makes using a CodeSmithTemplate Explorer Visual Studio
Generator Project very useful.

Creating a new CodeSmith Generator Project

To create a new CodeSmith Generator Project file, right click inside of Windows Explorer and select New -> CodeSmith Generator Project.

CodeSmith Generator Projects from Windows Explorer or Template Explorer

CodeSmith Generator Projects expose a context menu from within Windows Explorer. right-click

The menu options include:

Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.
Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.
Add Outputs

Generation Feedback

http://docs.codesmithtools.com/display/Generator/CodeSmith+Project+Manage+Outputs

In Windows Explorer and , you will see a Generation Progress window that will show you progress of your template generation.Template Explorer

Details: Toggle Details Button for verbose progress and feedback of your generation process.
 Closes the window when generation completes.Close when complete:

 Closes the window.Close:

Using a Generator Project from MSBuild

You can create your own custom pre-generation build logic by utilizing the CodeSmith Generator Task within .MSBuild
MSBuild tasks help manage the build process within your Visual Studio projects.

Why would I want to roll my own when you integrate it with Visual Studio?

There might be times when you need to customize some aspect of the generation process during it's consuming build process. During these time
you might have to call CodeSmith Generator from MSBuild using the CodeSmith Generator task that's shipped for you.

CodeSmith Generator MSBuild Targets

An MSBuild target file is used to define your own tasks during the build process. CodeSmith Generator ships their own targets file which defines
all the capabilities of using generating during the generation process. The CodeSmith.targets file defines how toCodeSmith Generator Projects
use the from your Generate Items and also defines how to call CodeSmith with your CodeSmith Generator Project file andGenerate BuildAction
run the generation process.

This file can be found at the following location: or C:\Program Files\MSBuild\CodeSmith\CodeSmith.targets C:\Program Files
(x86)\MSBuild\CodeSmith\CodeSmith.targets

When you set the BuildAction to Generate in Visual Studio, you're actually using the CodeSmithGenerate Target and set the
project item to use the Generate Build Task.

Configuration

In order to use the CodeSmith Generation task you must import the CodeSmith.targets file for usage in your MSBuild Project file.

You can import this target in your Visual Studio Projects by using the CodeSmith Generator Import tag in your Visual Studio Project file.

http://blogs.msdn.com/b/msbuild/

<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003 ">
 ...
 <Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets ">
 <Import Project="$(MSBuildExtensionsPath)\CodeSmith\CodeSmith.targets ">
 ...
<Project>

Generating a Generator Project

CodeSmith Generator projects can be run from your MSBuild projects by adding the following line to your project file:

<CodeSmith ProjectFile="MyProject.csp" />

In this example we will be showing how to call a custom CodeSmith Generator Project that will generate necessary meta-data prior to building in
release mode.

Example

<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003 ">
 ...
 <Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets ">
 <Import Project="$(MSBuildExtensionsPath)\CodeSmith\CodeSmith.targets ">

 <Target Name="BeforeBuild" Condition="'$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
 <CodeSmith ProjectFile="GenerateMetaData.csp" >
 <Target>
 ...
<Project>

Usage

The CodeSmith Generator Task exposes a few properties to assist you in your CodeSmith Generator tasks.

ProjectFiles: is the property that can accept a single or ";" separated values of names of CodeSmith Generator Projects that will be used for
Code Generation.

Example

<CodeSmith ProjectFile="GenerateMetaData.csp;GenerateIndex.csp">

OutputFiles: is the property that specifies all of the OutputFiles specified in your CodeSmith Generator Project files.

Verbose: a boolean property that indicates whether or not to receive verbose messages.

Debug: a boolean property that indicates if the templates should be compiled in debug mode.

You can also specify your own templates to run during this custom build process by using the CspFiles tag. This will let you specify your items in
an ItemGroup and pass them all into ProjectFiles.

Example

<ItemGroup>
 <CspFiles Include="MyProject.csp" >
 <CspFiles Include="MyOtherProject.csp" >
 <ItemGroup>

 <Target Name="Build">
 <CodeSmith ProjectFiles ="@(CspFiles)" >
 <Target>

Find .More information on MSBuild Tasks

Using a Generator Project from Command-Line

Since a CodeSmith Generator project contains all necessary metadata to run the execution of the most complicated of
code generation projects. It makes it possible to call your CodeSmith Generator Project through any batch file,
command-prompt, or any application that let's you launch a process with arguments.

The supports these command-line switches:CodeSmith Generator Console Application

Input Options

<file> Project File to be used for generation

/property:<name>=<value> or Assign a property value from the command line. Only property types which support/p:<name>=<value>
conversion to and from string can be assigned in this way.

Compiler Options

/debug[+|-] Emit (or suppress) debugging information (allows attaching a debugger to a running template)

http://msdn.microsoft.com/msdnmag/issues/06/06/InsideMSBuild/default.aspx

/tempfiles[+|-] Keep (or delete) temporary files (if debug is on then tempfiles will also automatically be on)

Miscellaneous Options

/verbose or Display verbose messages/v

/help or Display usage information/?

/nologo Suppress generator copyright message

Anatomy of a Project File

At a high level, a CodeSmith Generator Project file manages all of the template properties in a given CodeSmith
Generator Project. These files use XML to declaratively manage all of the CodeSmith Generator template properties for each
of your template Outputs using a .csp file extension.

Every CodeSmith Generator Template uses a that help drive template meta data in your generation process. When the propertyProperty Sheet
sheet is saved, it is saved as a Property Set, an XML serialized version of your properties and their values. Saving an XML version enables you
easily recover all of the options you designated while configuring your Property Sheet when this file was created.

Header

The XML Header specifies the current XML Schema Definition for a CodeSmith Generator Project. The CodeSmith Generator node also
encapsulates the entire body of the CodeSmith Generator Project XML Files.

<?xml version="1.0"?>

<codeSmith xmlns="http://www.codesmithtools.com/schema/csp.xsd">

This csp.xsd can be found at /Schemas/csp.xsdINSTALL DIR

Defaults

Default Template - You can configure a CodeSmith Generator Project to use Default Template, when configured, each of the Property Sets that
do not have a Template assigned to them will automatically use the Default Template to execute and run.

<defaultTemplate path="businessobject.cst" />

Default Properties - You can configure default properties to use within your CodeSmith Generator Project. These properties are available to all of
the templates assigned within your CodeSmith Generator Project. These are especially useful to define properties that are fairly static in nature.

<defaultProperties>

 <property name="ClassNamespace">CompanyName.RootNamespace</property>

 </defaultProperties>

Variables

The CodeSmith Generator Project supports variables that can be used in the property sets. Variables are an easy way to have a common piece of
data that is stored in only one place.

You can edit the CodeSmith Generator Project manually to place variables. The variable for format is its name surrounded by $(), ie,

$(ConnectionString1).

<variables>
 <add key="ConnectionString1" value="Data Source=(local);Initial Catalog=PetShop;Integrated
Security=True" />
 <add key="ProviderType"
value="SchemaExplorer.SqlSchemaProvider,SchemaExplorer.SqlSchemaProvider" />
</variables>

<propertySet name="Dbml" template="CSharp\Dbml.cst">
 <property name="SourceDatabase">
 <connectionString>$(ConnectionString1)</connectionString>
 <providerType>$(ProviderType)</providerType>
 </property>
</propertySet>

To learn more on variable usage please click .here

Property Sets

For every template output you will see the associated PropertySet and it's output. The PropertySet may or may not have a template defined, if it
does not, it will use the default template value for generation. The Properties defined within each of the property sets are specific to this Output
and are not shared with any other Outputs.

<propertySets>
 <propertySet output="Product.cs">
 <property name="SourceTable">
 <connectionString>Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Petshop.mdf;</connectionString>

<providerType>SchemaExplorer.SqlSchemaProvider,SchemaExplorer.SqlSchemaProvider</providerType>
 <table>
 <owner>dbo</owner>
 <name>Product</name>
 </table>
 </property>
 </propertySet>

 <propertySet output="Order.cs">
 <property name="SourceTable">
 <connectionString>Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\Petshop.mdf;</connectionString>

<providerType>SchemaExplorer.SqlSchemaProvider,SchemaExplorer.SqlSchemaProvider</providerType>
 <table>
 <owner>dbo</owner>
 <name>Orders</name>
 </table>
 </property>
 </propertySet>
 </propertySets>

Defined Property Sets

Each property set is defined between propertySet nodes as depicted in the image below.

Using the Console Application

Using the CodeSmith Generator Console Application covers the following sections:

Incorporating Generator into Your Build Process
Using a CodeSmith Generator Project from Command-Line
Basic Console Application Usage
Handling Input
Handling Output

Incorporating Generator into Your Build Process

Using or the Visual Studio integration interactively to generate code can significantly boost your productivity, but that's only partTemplate Explorer
of what CodeSmith Generator can do for you. In many cases, you'll see even more benefit by incorporating CodeSmith Generator directly into
your build process. To facilitate this, CodeSmith Generator includes a version that you can call from a CodeSmith Project, a build toolconsole
such as NAnt. or a Visual Studio pre-compile task in . This helps you ensure that any generated files in your application are alwaysMSBuild
up-to-date.

For example, suppose you are using CodeSmith Generator to automatically create a data access layer and business objects in C# based on
selected tables in your database. What happens if you change the schema of those database tables? If you're using CodeSmith
Generator manually, you must remember to regenerate the DAL and business objects. But if you've hooked up the CodeSmith Generator Console
Application to your build process, the changes in the database schema will automatically be reflected in your final .NET application the next time
that you compile the application, without any further effort on your part.

In this section of the help file, you can learn how to:

Use the CodeSmith Console Application
Specify template metadata
Set CodeSmith compiler options

Basic Console Application Usage

The CodeSmith Generator Console application enables executing CodeSmith Generator Project files from the command line in a very simple
manor. Here is an example of executing the PersonArray CodeSmith Project file:

cs.exe PersonArray.csp

Handling Input

To make effective use of the CodeSmith Generator Console Application, you must supply the appropriate metadata for the template that you are
using as the basis for the generated file. There are two ways that you can do this:

By supplying a CodeSmith Generator Project File
By supplying properties on the command line

Specifying Properties on the Command Line

You can specify individual properties on the command line, using the syntax

/property:<name>=<value>

 or

/p:<name>=<value>

Only property types which support conversion to and from string can be assigned in this way.

 You can include multiple instances of the /property switch on the command line to define multiple properties in this way.

If you specify both a property set XML file and a property value on the command line, the property value will override any setting
in the property set XML file.

Handling Output

To see an example of how to handle output check out:

Default Output Files in Templates

Default Output Files in Templates

To use a template's default file name for the output file, specify the command-line switch./out:default

Within a template, you can specify the default output file name by . For example, if your C# languageoverriding the methodGetFileName
template contains a property named , you might include this code to set the default output file name:ClassName

<script runat="template">
public override string GetFileName() {
 return ClassName + ".cs";
}
</script>

Using ActiveSnippets

CodeSmith Generator delivers strong integration within and ActiveSnippets are a driver towardVisual Studio
increasing developer productivity. ActiveSnippets, at a high level, are CodeSmith Generator templates with exposure
to the entire .Net Framework which you can utilize with a few keystrokes inside of Visual Studio. The output of your

1.

2.
3.
4.

ActiveSnippet will be rendered right where you expanded on the code editor.

You can watch this video tutorial for more information:

Visual Studio currently offers support for simple template based snippets. This is a great feature for simple snippets of code,
however these templates do not contain any advanced logic or access to rich meta-data. For simple snippets such as creating a
simple property shell without any logic, we still recommend using the Visual Studio snippet.

 Things to consider before creating an ActiveSnippet

You have access to the entire .Net Framework, SchemaExplorer, XmlProperty, Custom Assemblies, or any other rich meta-data.
Complex Objects such as an XmlProperty and SchemaExplorer types can exist as properties in your CodeSmith Template, and similarly
act as arguments in an ActiveSnippet.
An ActiveSnippet can setup default values for arguments that are fairly static in your template.

Creating an ActiveSnippet Template

The first step in creating an ActiveSnippet is by simply creating a . In this example, we'll create aCodeSmith Generator Template
CodeSmith Generator Template that doubles as an ActiveSnippet and is able to generate properties for a given TableSchema in C#.

This template can be found in Template Explorer under the ActiveSnippets\CSharp or ActiveSnippets\VisualBasic folders.

For more information on creating a new template please take a look at the .following tutorial

Requirements

The required output needs to look like this for every column in a table.

private int _orderId;
public int OrderId
{
 get { return _orderId; }
 set { _orderId = value; }
}

Writing the Template

When first creating a template, think about the requirements that we defined above and focus and write the template in small steps. This keeps
you from getting overwhelmed by writing everything at once.Next, try and think about how you would write the template by outlining some steps
in . This will make writing the template much easier. Here are a few steps that we used to create this template:pseudocode

Iterate through the Columns (SchemaExplorer.ColumnSchemaCollection) of the template property SourceTable
(SchemaExplorer.TableSchema).
Create both a field and a property to encapsulate the column.
Use a to get the correct type for the field and property.CodeSmith Generator Map
Ensure my field is CamelCased and my Property Name is PascalCased.

Finally, ensure that the template compiles and runs from or .Template Editor Template Explorer

http://en.wikipedia.org/wiki/Pseudocode

Visual Studio Integration

The next step is to launch Visual Studio, and explore the options available for using ActiveSnippets within Visual Studio. This will help you get a
feel for the integration capabilities for using your ActiveSnippets.

To access various ActiveSnippet features, you can use keyboard shortcuts or use the ActiveSnippet menu items. These are located in the
Generator submenu on the right hand side of the Visual Studio menu bar. Once the Generator menu is expanded, you will see the menu items for
ActiveSnippet's as shown above. The command keyboard shortcut is located to the right of every menu option that has one configured.

ActiveSnippet Configuration

The ActiveSnippet Configuration can be accessed by selecting the ActiveSnippet Configuration menu item located in the Visual Studio
Generator sub-menu. The ActiveSnippet Configuration dialog allows you to Add, Remove, Edit or view all ActiveSnippets, Once you've created a
template for usage as an ActiveSnippet, you must add the ActiveSnippet which maps to a CodeSmith Generator Template.

ActiveSnippets must be configured inside Visual Studio in order to be used.

Find detailed information on .Configuring an ActiveSnippet

Output ActiveSnippet Usage

ActiveSnippet usage information can be obtained through the CodeSmith Generator . CodeSmith attempts to find theOutput Window
ActiveSnippet usage information using the context of the current line with focus. To display the output usage for configured ActiveSnippets you
can select the Output ActiveSnippet Usage menu item or press Ctrl+E, Ctrl+R.

Notable Information

Executing Usage with no alias on the editor will display all ActiveSnippets.
Executing Usage using part of the prefix, will display a list of all ActiveSnippets starting with that prefix

For Example, using "t" by itself will show a list of all ActiveSnippets beginning with a "T".

Expanding an ActiveSnippet

Attempts to execute the ActiveSnippet using the context of the current line with focus. If there is an ActiveSnippet
configured and no errors, CodeSmith Generator will attempt to find the ActiveSnippet by Alias or by Name. If the
ActiveSnippet is found, CodeSmith Generator will compile the template if not compiled, and then execute the template
with the given arguments. The template output of the ActiveSnippet will be placed on the editor control of Visual
Studio.

Syntax

Calling an ActiveSnippet is easy. Once , you simply have to enter the alias or name along with any argument parameters. Once youconfigured
have defined the active snippet you want to expand, you just need to select the menu item or press Expand ActiveSnippet CTRL-E, CTRL-E.

If you are unsure about an ActiveSnippets usage is, you can select the menu item or press Output ActiveSnippet Usage
Ctrl+E, Ctrl+R.

By default the shortcut for Expanding an ActiveSnippet is .CTRL-E, CTRL-E

Example

In the example below we will execute an ActiveSnippet with the name tp and pass it one argument parameter.

tp Petshop.dbo.Orders

You can also access an ActiveSnippet by referring to it's full name.
You can use complex objects, such as a TableSchema by referring to it's fully qualified name Petshop.dbo.Orders

to execute this active snippet we will select the menu item or press Expand ActiveSnippet CTRL-E, CTRL-E. The below screenshot shows the
code which was generated by this ActiveSnippet.

Notable Information

If there is an error executing an already configured ActiveSnippet, usage information on the discovered ActiveSnippet will be presented.
This shows the ActiveSnippet along with all of the arguments for that template.

Template is not valid.
SourceTable is required.
tp - TableProperties (.cs)

If CodeSmith Generator can not find the desired ActiveSnippet by name or by configured alias, then a full list of all available
ActiveSnippets will be presented in the CodeSmith Generator .Output Window

ActiveSnippet Configuration

The ActiveSnippet Configuration can be accessed by selecting the ActiveSnippet Configuration menu item located in the Visual Studio
Generator sub-menu. The ActiveSnippet Configuration dialog allows you to Add, Remove, Edit or view all ActiveSnippets, Once you've created a
template for usage as an ActiveSnippet, you must add the ActiveSnippet which maps to a CodeSmith Generator Template.

Adding a new ActiveSnippet

The first step to creating a new ActiveSnippet is to click the , and use the Template Chooser Window to browse to the CodeSmithAdd button
Generator template that will be serving as your ActiveSnippet. Once you select the template, you must configure at minimum the Template
Options for the template.

Template Options

The template options tab holds the mapping information about your CodeSmith Generator template. This information is required to allow you to
have access to this template from within Visual Studio.

Template: The full path to the CodeSmith Generator template.

Alias: The ActiveSnippet Alias is the command to be used as the alias representing the selected CodeSmith Generator template.Description:

Specifies the friendly name description of the ActiveSnippet. It will be shown during the Output Usage information.Target Extensions: The

template target language is used as a hint for ActiveSnippets that have the same name.Template Language: The template language shows the

selected CodeSmith Template Output Language.

Argument Mapping

Configuring the arguments for an ActiveSnippet is a powerful feature because it does not force you to have to always pass all properties in for the
selected CodeSmith Generator Template as arguments.

This tab is a dual pane select box which shows all template properties to the left, and all arguments to the right. Control arrows are used to move
properties to and from the Arguments window. The up and down arrows are used to setup the argument order of the ActiveSnippet.

Template Properties Box: A window of all the property names in a template.Arguments Box: A window of all the arguments that will be required to

use your ActiveSnippet

Default Property Values

The Default Property Values tab will allow you to enter possible default values for your CodeSmith Generator Templates' Property Sheet. This will
show all the properties for the ActiveSnippet based CodeSmith Generator Template.

Values that you want to be required properties for ActiveSnippet arguments would not be filled in as a default value.

Basic Template Syntax

Basic Template Syntax covers the following sections:

The CodeTemplate Directive
Including Comments
Declaring and Using Properties
Escaping ASP.NET Tags
The CodeSmith Generator Objects

The CodeTemplate Directive

Every CodeSmith Generator template must start with a CodeTemplate directive. Every template must contain precisely one CodeTemplate
directive. The only thing that can appear before the CodeTemplate directive in the template is one or more .comments

The CodeTemplate directive is the only required directive and is used to specify the general properties of the template, such as the language that
the template is written in and the description. For example, here's the CodeTemplate directive from the SortedList.cst sample template:

<%@ CodeTemplate Language="VB" TargetLanguage="VB" Description="Generates a strongly-typed
collection of key-and-value pairs that are sorted by the keys and are accessible by key and by
index." %>

This directive specifies that the template uses Visual Basic as its own code-behind language, and that it produces VB output. It also includes a
description of the purpose of the template.

CodeTemplate Directive Attributes

There are seven attributes that you can supply to the CodeTemplate directive. The Language parameter is required; all of the rest are optional.

Language

The Language attribute specifies what language will be used to write the template. Possible values for this attribute are:

C# to author the template in C#
JS to author the template in JScript
VB to author the template in Visual Basic .NET

TargetLanguage

The TargetLanguage attribute is used to specify the output language of the template. You can use any string you like for the attribute; CodeSmith
Generator doesn't use it in any way to generate the template's output. The also uses this attribute to determine how to syntaxTemplate Editor
highlight the static content of a template.

Description

The Description attribute is used to describe your template in a general way.

Inherits

By default all CodeSmith Generator templates inherit from . This class provides the basic functionality of theCodeSmith.Engine.CodeTemplate
template; much like the Page class provides the basic functionality of an ASP.NET page. The Inherits attribute can be used to specify that a
template inherits from a different class. However, any class that a template inherits from must inherit, directly or indirectly, from
CodeSmith.Engine.CodeTemplate. CodeSmith Generator must also be able to find this class. To ensure this, you must either supply an Assembly
directive pointing to the assembly that contains the class, or a Src attribute that points to the source code for the class.

For an example of using template inheritance, see the BaseTemplates sample project included with your CodeSmith Generator installation. This
project defines two new template classes, OutputFileCodeTemplate which inherits directly from CodeTemplate and SqlCodeTemplate which
inherits from OutputFileCodeTemplate. To base a new template on SqlCodeTemplate you could include these directives at the top of your
template:

<%@ CodeTemplate Language="CS" Inherits="CodeSmith.BaseTemplates.SqlCodeTemplate" %>
<%@ Assembly Name="CodeSmith.BaseTemplates" %>

Having done this, all of the helper methods defined in the OutputFileCodeTemplate and SqlCodeTemplate classes, such as GetSqlDbType(),
IsUserDefinedType(), GetSqlParameterStatements(), and many more, are available to your template. Template inheritance thus provides a good
way to reuse tested utility methods across multiple templates without cut-and-paste duplication of code.

The BaseTemplates sample can be found in your extracted samples (...\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\BaseTemplates)

Src

The Src attribute allows you to include functionality from another class in your template by dynamically compiling that class file as part of your
template. Set the value of the attribute to point to the source file of the class that you want to include in the template. You use the Src attribute to
enable the .CodeSmith Generator code-behind model

Debug

The Debug attribute is used to determine whether or not debug symbols should be included in the generated assembly. Click to learn morehere
about debugging.

LinePragmas

The LinePragmas attribute is used to determine whether or not line pragmas are generated during template compilation. When this attribute is set
to True, template errors will point to the template source code. If it is set to False, then template errors will point to the compiled source code.

ResponseEncoding

The ResponseEncoding attribute is used to set the encoding for the template content and it's outputs. The ResponseEncoding attribute supports
values from the System.Text.Encoding.GetEncoding method. By default, the encoding is set to ASCII.

OutputType

The OutputType attribute is used to set the output type of the template. The following values can be used:

Normal - This is the default setting and will cause the output of the template to be written to the normal Response stream.
Trace - This setting will cause the output of the template to be written to the Trace object.
None - This is useful in a master template scenario where the template justThis setting will cause the template to not output anything.
calls other templates and outputs those to files and the master template itself doesn't output anything.

NoWarn

Comma-delimited list of the warning ID numbers that the template compiler should suppress. These are standard C# / VB compiler warning ID
numbers.

ClassName

The ClassName attribute is used to specify the class name of the compiled template. This attribute should be defined when using partial
code-behinds.

Namespace

The Namespace attribute is used to specify the namespace for the compiled template. This attribute should be defined when using partial
code-behinds.

Encoding

The Encoding attribute allows you to define the encoding the current will be saved as. The default encoding of a templatetemplate document
document is UTF-8.

ResponseEncoding

The ResponseEncoding attribute allows you to define the encoding the will be saved as. The default encoding of agenerated document
generated document is UTF-8.

If a generated document already exists on disk and the regenerated documents contents match exactly, the documents
encoding will not be changed.

Including Comments

To include comments in a template, surround them with <%-- and --%> markers. Comments may span multiple lines. For instance, this comment
will have no effect on the template's output:

<%--
Name: TestHarness.cst
Description: Generates a standard test harness for an object
--%>

Inside of a script block, use the commenting syntax of the template's language. For instance, if your template is written in C#,
comments in script blocks should be prefaced with // or /* commented */.

To include a comment in a template's output, treat it like any other string. The comment in this template fragment will
be copied directly to the generated code:

<%@ CodeTemplate Language="VB" TargetLanguage="VB">
' This class generated by CodeSmith Generator

Declaring and Using Properties

The key to making templates flexible and useful is to define properties or metadata. CodeSmith Generator uses properties to customize the
generated code. When the user opens a template in Template Explorer, they must for all of the required properties defined in thesupply values
template before they can generate the code. Note that properties can be defined as optional properties, in which case the user need not supply a
value before generating code.

Properties are specified in the template using a . For example, this directive specifies a property named Key which accepts aProperty directive
string value:

<%@ Property Name="Key" Type="System.String" %

The value that the user enters for the Key property will be inserted into the template output any place that the property name appears surrounded
by the special characters <%= %>. For example, consider this template:

<%@ CodeTemplate Language="VB" TargetLanguage="VB">
<%@ Property Name="Key" Type="System.String" %>
' The key is <%= Key %>

If the user enters Ham for the value of the Key property, then the output of this template would be:

' The key is Ham

Properties in CodeSmith Generator can be simple or very complex. You can define that allow the user to choose from aenumerated properties
predefined selection of values. You can use CodeSmith Generator 's to fill properties from database objects. You can createSchemaExplorer
properties based on the contents of an , or even define your own complete with custom dialog boxes for user propertyXML file custom properties
editing.

Property Directive

To declare a property, you use a Property directive. For example, this directive defines a property named ClassName of type System.String:

<%@ Property Name="ClassName" Type="System.String" Category="Context" Description="The name of the
class to be generated." %>

Property Directive Attributes

The Property directive has nine possible attributes. The Name and Type attributes are required, and the other attributes are optional.

Name

The Name attribute is used as the name of the property when it is displayed on the template's property sheet in CodeSmith Explorer. This is also
the variable name that is used to store the value of the property within the template. This must be a legal variable name within the template's
language. For example, if the template uses C# as its language, then the name must follow the rules for C# variables.

Type

The Type attribute specifies the .NET type of the property. This parameter can be any .NET data type, though for complex types you may need to
specify an Editor attribute to allow the user to successfully supply a value for the property.

For scalar types, you must use Base Class Library types such as String or Int32 rather than language-specific types such as
string or int.

Default

The Default attribute is used to set the default value for this property. If you omit this attribute, then CodeSmith Generator does not supply a
default value for the property.

Category

The Category attribute specifies what category this property should appear under in the CodeSmith Explorer property sheet. If you omit this
attribute, CodeSmith Generator will place the property in a category named Misc.

Description

The Description attribute supplies descriptive text to be displayed at the bottom of the property sheet when this property is selected.

http://docs.codesmithtools.com/display/Generator/Declaring+a+Simple+Property

Optional

The Optional attribute specifies whether or not this property is optional. If a user does not specify a parameter that is not optional then CodeSmith
Generator will not let them proceed. A value of true means that a value for the property is not required, and a value of false means that a value for
the property is required.

Editor

The Editor attribute specifies the GUI editor that will be used in the property grid for this property. This is equivalent to placing an [EditorAttribute]
on a code property.

EditorBase

The EditorBase attribute specifies the base type for the editor. If none is specified, then UITypeEditor is assumed.

Serializer

The Serializer attribute specifies the IPropertySerializer type to use when serializing the property's values. This is equivalent to using a
[PropertySerializerAttribute] on a code property.

OnChanged

The OnChanged attribute specifies the event handler to fire when the property value changes.

DeepLoad

The DeepLoad attribute is only used on objects. When set to true, SchemaExplorer will grab all your schema information inSchemaExplorer
advance saving make multiple round trips back to your database.

Declaring a Property From the CodeBehind

Declaring a property from code is essentially like creating a property in any class. The most notable options using Attributes to help you describe
your property, it's location, and it's editor.

Example:

private string aliasFilePath;

 [Editor(typeof(System.Windows.Forms.Design.FileNameEditor),
typeof(System.Drawing.Design.UITypeEditor))]
 [Category("01. General")]
 [Optional]
 [DefaultValue("")]
 [Description("Optional File Path to a table/object alias file.")]
 public string AliasFilePath
 {
 get {return this.aliasFilePath;}
 set {this.aliasFilePath = value;}
 }

EditorAttribute - Specifies which editor to use in the Property Sheet.
 - Specifies a Property Sheet group this option belongs to.CategoryAttribute
 - If declared the property will be marked as optional.OptionalAttribute

 - Specify the default value for the property.DefaultValue
 - Used to create a description for the selected property.DescriptionAttribute

 - Has been depreciated.CodeTemplatePropertyAttribute

Declaring an Enumerated Property

Sometimes it's convenient to have a property that limits the user to selecting from a fixed set of choices. For instance, in the SortedList.cst
template, the Accessibility property controls the accessibility of the generated class:

To accomplish this, you need to take two steps. First, define an enumeration in a <script> block in your code:

<script runat="template">
Public Enum AccessibilityEnum
 [Public]
 [Protected]
 [Friend]
 [ProtectedFriend]
 [Private]
End Enum
</script>

Second, the Property directive should point to the enumeration:

<%@ Property Name="Accessibility" Type="AccessibilityEnum" Category="Options" Description="The
accessibility of the class to be generated." %>

That's all there is to it!

Property Validation

Because you can define a property as being , you may want to validate the property in your template to determine whether or not the useroptional
has entered a value. For example, you might want to allow generating a class either with a namespace declaration or without, at the user's option.
To do this, you would first define an appropriate optional property:

<%@ Property Name="ClassNamespace" Type="System.String" Optional="True" Category="Context"
Description="The namespace that the generated class will be a member of." %>

In your template, you can check to see whether there's a value in this property at runtime. If so, you want to output the appropriate namespace
declaration. If you're using C# as your template language, you'd do that like this:

<% if (ClassNamespace != null && ClassNamespace.Length > 0)
{ %>namespace <%= ClassNamespace %>{<% }
%>

If your template is using VB, the equivalent code is:

<% If Not ClassNamespace Is Nothing AndAlso ClassNamespace.Length > 0 Then %>
Namespace <%= ClassNamespace %>
<% End If %>

Escaping ASP.NET Tags

If you're building ASP.NET code with CodeSmith Generator , you'll run into the problem that the <% tags that you want to output to your ASP.NET
code are interpreted by CodeSmith Generator as CodeSmithtags instead. The solution is to escape the starting tags, replacing <% with <%%.
This will be replaced with <% in the output, and not seen by CodeSmith Generator as an opening script tag.

The CodeSmith Generator Objects

Behind the scenes, the CodeSmith Generator engine works by manipulating a rich object model. That object model is exposed for your templates
to work with as well. In this section, we'll explore some of the things that you can do with the CodeSmith Generator objects:

The objectCodeTemplate
The objectProgress
The objectCodeTemplateInfo

The CodeTemplate Object

The CodeTemplate class represents your entire template as it's being processed by CodeSmith Generator . You can work with a CodeTemplate
object to interact directly with the CodeSmith Generator engine. For example:

Use the method to specify the default output file name for a templateGetFileName
Use the to render the output of the templateRender method
Use of the object to insert your own code into the CodeSmith Generator processing cycleevents
Use the property to write directly to the template outputResponse

Overriding the GetFileName Method

CodeSmith Generator uses the GetFileName method to provide a default output file name for the template when it's called from the CodeSmith
Generator , or . This is also used in CodeSmith Generator as the default file name if youConsole Application Template Editor Master Template
save the output of a template, and anywhere else that CodeSmith Generator needs to assign a filename to the output of your template. You can
override this method in your code when you want to build the default file name based on property input or other factors.

For example, if your C# language template contains a property named ClassName, you might include this code to set the default output file name:

http://docs.codesmithtools.com/display/Generator/Incorporating+CodeSmith+into+Your+Build+Process

<%@ Template Language="C#" TargetLanguage="Text" %>
<%@ Property Name="ClassName" Type="System.String" Default="ClassName" %>

This template shows off how to override the GetFileName method.

<script runat="template">
public override string GetFileName()
{
 return ClassName + ".cs";
}
</script>

Example

Using the template defined below we will show off how changing the database table we generate off of, changes the the file path that the template
is rendered to.

<%@ Template Language="C#" TargetLanguage="C#" %>
<%@ Property Name="SourceTable" Type="SchemaExplorer.TableSchema" %>
<%@ Assembly Name="SchemaExplorer" %>
<%@ Import Namespace="SchemaExplorer" %>

//This template shows off how to override the GetFileName method using a Database Table.
public class <%= SourceTable.Name %>
{
}

<script runat="template">
public override string GetFileName()
{
 return SourceTable.Name + ".cs";
}
</script>

The first step is to create the template above or download the one attached below. Next, choose a table your wish to generate against by
configuring the SourceTable Property via the PropertyGrid. In the screenshot below we are choosing a random database table called Account.
Finally, we click Generate to render the templates contents to a file called Account.cs file name.

You can download this template by clicking .here

Overriding the ParseDefaultValue Method

You may sometimes want to define a property with a default value that cannot be automatically converted from a string. In this case, you'll need to
override the method in your template to handle parsing the default value from the template and assigning it to the property.ParseDefaultValue
This method is called by CodeSmith Generator for each property in the template, and gets passed the property and the default value string from
the template. If you override the method, you can insert whatever custom logic you like to assign values to the property that you care about, while
passing other properties to the base method.ParseDefaultValue

Overriding the Render Method

The CodeTemplate.Render method is where CodeSmith Generator does the actual work of combining metadata with your template to create the
template's output. You can override this method if you want to modify the way that CodeSmith Generator ultimately handles that output. For
example, overriding this event allows you to write your template's output to multiple destinations instead of just to the default output window.
Here's a template that outputs some text to two files at the same time, as well as to CodeSmith's default output window:

<%@ CodeTemplate Language="C#" TargetLanguage="Text" Description="AddTextWriter Demonstration." %>
<%@ Import Namespace="System.IO" %>
//This template demonstrates using the AddTextWriter method
//to output the template results to multiple locations concurrently.
<script runat="template">
public override void Render(TextWriter writer)
 {
 StreamWriter fileWriter1 = new StreamWriter(@"C:\test1.txt", true);
 this.Response.AddTextWriter(fileWriter1);

 StreamWriter fileWriter2 = new StreamWriter(@"C:\test2.txt", true);
 this.Response.AddTextWriter(fileWriter2);

 base.Render(writer);

 fileWriter1.Close();
 fileWriter2.Close();
 }
</script>

Don't omit the call to the base.Render method. If you forget this, then you won't get the default output!

You also have access to the default TextWriter if you override the Render method. This means that you can write your own
headers or other additional information directly to the output along with the template's output.

Template Events

The CodeTemplate object provides three events that you can use to insert logic during the template processing cycle:

The event fires when the template instance is createdOnInit
The event fires just before the template is renderedOnPreRender
The event fires just after the template is renderedOnPostRender
The event fires after a template property has changed.OnPropertyChanged

The OnInit Event

The OnInit event fires when the CodeSmith Generator engine creates an instance of your template. You can override this event to perform any
necessary setup tasks for your template. For instance, suppose your template uses an to send a copy of its output to aadditional TextWriter
socket on a remote computer via the Internet. You could override the OnInit event to check for Internet connectivity, and warn the user that the
template will not succeed if you can't find an open Internet connection when the template is instantiated.

The OnPreRender Event

The event is fired just before the CodeSmith Generator engine merges metadata with your template to produce the template'sOnPreRender
output. One use for this event is to perform "sanity checks" on metadata entered by the user. You could, for example, check that a date entered
was within an acceptable range, and change it to the earliest or latest acceptable date if it is not.

Although you can modify metadata in the OnPreRender event, you cannot prevent the template from being rendered.

The OnPostRender Event

The event is fired after CodeSmith Generator has merged metadata with your template to produce the output. You can use thisOnPostRender
event to perform any additional processing you would like after CodeSmith Generator has finished its job. For example, the StoredProcedures.cst
sample template included with CodeSmith Generator uses this event to :autoexecute the generated SQL script

protected override void OnPostRender(string result)
{
 if (this.AutoExecuteScript)
 {
 // execute the output on the same database as the source table.
 CodeSmith.BaseTemplates.ScriptResult scriptResult =
CodeSmith.BaseTemplates.ScriptUtility.ExecuteScript(
 this.SourceTable.Database.ConnectionString,
 result,
 new System.Data.SqlClient.SqlInfoMessageEventHandler(cn_InfoMessage));

 Trace.Write(scriptResult.ToString());
 }

 base.OnPostRender(result);
}

The OnPropertyChanged Events

The event is fired after a template property has been modified. You can use this event to perform any additional processingOnPropertyChanged
or validation for the property that has been changed.

<script runat="template">
protected override void OnPropertyChanged(string propertyName)
{
Response.Write(propertyName + "has changed");
base.OnPropertyChanged(result);
}
</script>

The Response Property

The property of the CodeTemplate object returns an instance of the CodeTemplateWriter class. This object represents the actualResponse
response stream for the template output. You can write to the stream programmatically using this property, thus inserting your own output directly
into the generated template. For example:

<%@ CodeTemplate Language="C#" TargetLanguage="Text" Description="This template demonstrates
writing directly to the Response property" %>
<% RenderDirect(); %>
<script runat="template">
public void RenderDirect()
{
Response.WriteLine("Written directly to the Response property.");
Response.WriteLine("Hello " + System.Environment.UserName + "!");
}
</script>

Useful methods of the class include:CodeTemplateWriter

AddTextWriter - Add an additional output destination
Indent - Increase the indentation level of the output
Unindent - Decrease the indentation level of the output
Write - Write to the generated template without appending a new line
WriteLine - Write to the generated template and append a new line

The Progress Object

The object lets you show a progress bar to the template user when CodeSmith Generator is rendering the template. This is useful whenProgress
a template takes a long time to render, as it provides a visual cue to the user that CodeSmith Generator has not ceased responding. If you're
using CodeSmith Explorer, the progress bar is displayed to the left of the Generate button:

If you're using Visual Studio, the progress bar is displayed in the status bar, to the left of the line and column indicators:

To use the object, you'll typically set the maximum value and the amount of change represented by one progress step:Progress

this.Progress.MaximumValue = 25;
this.Progress.Step = 1;

Each time you want to increment the progress indicator on screen, you then call the method:PerformStep

this.Progress.PerformStep();

The CodeTemplateInfo Object

The CodeTemplateInfo object (available through the CodeTemplateInfo property of the CodeTemplate object) can be used to retrieve a variety of
information about the current template:

Property Returns

CodeBehind Gets the full path to the code-behind file for the template (or an empty string if there is no code-behind file).

ContentHashCode Gets the hash code based on the template content and all template dependencies.

DateCreated Gets the date the template was created.

DateModified Gets the date the template was modified.

Description Gets the description.

DirectoryName Gets the name of the directory the template is located in.

1.
2.

FileName Gets the name of the template file.

FullPath Gets the full path to the template.

Language Gets the template language.

TargetLanguage Gets the target language.

Here's a simple example of using the CodeTemplateInfo object:

<%@ CodeTemplate Language="VB" TargetLanguage="Text" Description="Demonstrates CodeTemplateInfo."
%>
<% DumpInfo() %>
<script runat="template">
Public Sub DumpInfo()
Response.WriteLine("Template: {0}", Me.CodeTemplateInfo.FileName)
Response.WriteLine("Created: {0}", Me.CodeTemplateInfo.DateCreated)
Response.WriteLine("Description: {0}", Me.CodeTemplateInfo.Description)
Response.WriteLine("Location: {0}", Me.CodeTemplateInfo.FullPath)
Response.WriteLine("Language: {0}", Me.CodeTemplateInfo.Language)
Response.WriteLine("Target Language: {0}", Me.CodeTemplateInfo.TargetLanguage)
End Sub
</script>

The output of running this template will be similar to this:

Template: CodeTemplateInfo.cst
Created: 1/1/1973 8:54:19 AM
Description: Demonstrates CodeTemplateInfo.
Location: C:\CodeTemplateInfo.cst
Language: VB
Target Language: Text

Advanced Template Syntax

Advanced Template Syntax covers the following sections:

Understanding CodeSmith Generator's Code Behind Model
Referencing Assemblies
Importing Namespaces
Including External Files
Sharing Common Code
Debugging Templates
Using Master Templates
Writing to Multiple Outputs

Understanding CodeSmith Generator's Code Behind Model

When you're writing a CodeSmith Generator template, you're dealing with two distinct kinds of code:

The code being generated
The scripting code that controls the generation process

As far as CodeSmith Generator is concerned, the first of these is just text, and can be any language at all: VB, SQL, Fortran, COBOL,
Esperanto...as long as it can be represented by a string of characters, CodeSmith Generator can generate it. This generated code is stored in the
CodeSmith Generator templates, and copied at runtime to the output file, or created on the fly by CodeSmith Generator.

The scripting code is both more and less limited than the generated code. It's more limited in that it can only be VB, C#, or JScript code. But it's
less limited in that you have two choices about where to store it. You can either mix it in to the template directly, storing it in <script> blocks, or
you can store it in separate code behind files. A code behind file is a source code file containing nothing but scripting code that's attached to a
template file by use of attributes within the .CodeTemplate directive

For example, here's a template that makes use of a code behind file:

<%@ CodeTemplate Src="VBCodeBehind.cst.vb" Inherits="UtilityCodeTemplate" Language="VB"
TargetLanguage="VB" %>
<%@ Property Name="ClassName" Type="System.String" Category="Options" Description="The name of the
generated class." %>
' This class generated by CodeSmith on <%= DateTime.Now.ToLongDateString() %>
<%= GetAccessModifier(Accessibility) %> Class <%= ClassName %>

 Public Sub New()
 End Sub

 ' Write your class here

End Class

Note that this template makes use of a function GetAccessModifier and a property Accessibility, even though neither one of them is defined in the
template. That's because they're defined in a separate code-behind file. Here are the contents of the code-behind file (VBCodeBehind.cst.vb):

Imports System.ComponentModel
Imports CodeSmith.Engine

' This class contains utility functions that can be
' used across many templates

Public Class UtilityCodeTemplate
 Inherits CodeTemplate

 Private _Accessibility As AccessibilityEnum = AccessibilityEnum.Public

 <Category("Options"), _
 Description("Accessibility of the generated class")> _
 Public Property Accessibility As AccessibilityEnum
 Get
 Return _Accessibility
 End Get
 Set
 _Accessibility = value
 End Set
 End Property

 Public Enum AccessibilityEnum
 [Public]
 [Protected]
 [Friend]
 [ProtectedFriend]
 [Private]
 End Enum
 Public Function GetAccessModifier(ByVal accessibility As AccessibilityEnum) As String
 Select accessibility
 Case AccessibilityEnum.Public
 GetAccessModifier = "Public"
 Case AccessibilityEnum.Protected
 GetAccessModifier = "Protected"
 Case AccessibilityEnum.Friend
 GetAccessModifier = "Friend"
 Case AccessibilityEnum.ProtectedFriend
 GetAccessModifier = "Protected Friend"
 Case AccessibilityEnum.Private
 GetAccessModifier = "Private"
 Case Else
 GetAccessModifier = "Public"
 End Select
 End Function
End Class

1.

2.

The ties the code-behind file to the template. The Src attribute of the directive specifies the filename of the code-behindCodeTemplate directive
file, and the Inherits attribute of the directive specifies the class in the file that the template is based on. Note that this class must itself inherit,
directly or indirectly, from .CodeSmith.Engine.CodeTemplate

Because Accessibility is defined as a property of the UtilityCodeTemplate class, CodeSmith Generator includes it in the template's property sheet
when the template is opened in Template Explorer:

There are two main advantages to moving code to a code-behind file:

It makes your templates easier to understand by separating the generated code from the scripting code that drives the generation
process.
It makes it possible to easily reuse utility functions across many templates by moving them to shared code-behind files.

Click to download the template and source code file.here

Referencing Assemblies

You can use the Assembly directive to reference an external assembly from a template, or to include a source file for dynamic compilation. For
example, CodeSmith Generator ships with an assembly named CodeSmith.CustomProperties.dll that includes custom editors for file names and
string collections. If you'd like to use one of these editors from your own template's property sheet, you need to reference the assembly:

<%@ Assembly Name="CodeSmith.CustomProperties" %>

The source code for the CustomProperties assembly is in the Sample folder (E.G., Documents\CodeSmith
Generator\Samples\<Version>\Projects\CSharp\CustomPropertiesSample) of your CodeSmith Generator installation.

Assembly Directive Attributes

There are two attributes that you can supply to the Assembly directive. You must supply one or the other, but not both.

Name

The attribute specifies the file name of an assembly to reference from the current template. The assembly must exist in the GlobalName
Assembly Cache, in the same directory as CodeSmith, in the CodeSmith\bin directory, in the CodeSmith\AddIns directory, or you can specify a
path relative to the template location. If you're working with templates within CodeSmith Generator, the preferred location is the

CodeSmith\AddIns directory.

You can also specify the Assemblies (E.G., ExampleAssembly, Version=0.0.0.0, Culture=neutral,FullName
PublicKeyToken=null)

Src

The attribute specifies the relative path to a source file that should be dynamically compiled along with the template.Src

Path

The attribute is a directory path to the assembly being used.path

Importing Namespaces

The Import directive is used to import a namespace for use in your template. This lets you refer to types in other assemblies more conveniently.
For instance, when you're using the assembly, you probably don't want to have to prefix every type from that assembly with theSchemaExplorer
name of the assembly. The solution is to include an Import directive in your template along with the directive:Assembly

<%@ Assembly Name="SchemaExplorer" %>
<%@ Import Namespace="SchemaExplorer" %>

Import Directive Attributes

There is one required attribute that you must supply to the directive.Import

Namespace

The Namespace attribute specifies the fully qualified name of the namespace to be imported.

Including External Files

You can cause CodeSmith Generator to compile the contents of an external file into your template by using an include statement. This can be
useful when you have common functions that you want to share between several templates. The include statement takes a single argument which
specifies the relative path from the current template to the file to be included:

<!– #include file="CommonScript.cs" –>

You can also use an include statement to bring in static template content. It doesn't matter what is in the file that you include; CodeSmith
Generator simply inserts the file contents into the template.

There are to share common code between templates. In most cases, you should use other methods forother ways
code-sharing, such as the Src attribute on the directive or an directive that imports a source file.CodeTemplate Assembly
That's because these methods require full .NET class files that are easier to edit in other code editors, while an include
statement will accept malformed source files.

Sharing Common Code

CodeSmith Generator offers several ways to share common code between templates:

You can place utility functions in a custom template class and reference it in the Inherits attribute of the directive.CodeTemplate
You can base templates on a common template class by using .code-behind files
You can compile common functions into an assembly, and reference the assembly using an directive.Assembly
You can place common functions into a source code file, and reference the file using an directive.Assembly
You can use to share code between templates.sub-templates
You can place common code in a separate source file and use an include statement to pull it directly into your
template.

Debugging Templates

http://msdn.microsoft.com/en-us/library/system.reflection.assembly.fullname.aspx

CodeSmith Generator supports debugging by using the . This article will show some tips and tricks in setting upCLR's Just-in-Time debugger
CodeSmith Generator templates to use the debugger.

Allow Debugging in Template

The first step to allow debugging a template is to set the Debug attribute on the to true.CodeTemplate Declarative

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Debug="True" %>

Setting a Break Point

In order to get the Just-in-Time debugger to load and stop at a point in your code, you need to use a S Debugger.Break()ystem.Diagnostics.
statement. If you are using a Code Behind, please remember to import the .System.Diagnostics namespace

System.Diagnostics.Debugger.Launch();
System.Diagnostics.Debugger.Break();

You must call ; before your first Statement or theSystem.Diagnostics.Debugger.Launch() System.Diagnostics.Debugger.Break()
process will crash.

Using the Debugger

When you execute a template and it encounters a break point, you will see the following dialog.

http://msdn.microsoft.com/en-us/library/bb384548.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debugger.break.aspx
http://msdn.microsoft.com/en-us/library/15t15zda.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debugger.launch.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debugger.break.aspx

When you see this dialog choose the debugger you want to use and click on the Yes button.

You can now debug a template just how you would debug any .NET project.

Debugging in Windows Vista or Windows 7

There are some extra steps that need to be completed before using the Just-In-Time debugger in Windows Vista or Windows 7.

First you need to make sure you have all the latest service packs installed. Next, the debugger in Vista will cause CodeSmith Generator to hang
when you finish debugging. You can work around this issue by updating the Just-In-Time debugger setting . TheDbgJITDebugLaunchSetting
setting is found in the registry at []. Change the value of HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework

to 2. If you are using a 64bit operating system then you must also set the same key (DbgJITDebugLaunchSetting DbgJITDebugLaunchSetting
) in this folder [] to 2. This will cause the debugger dialog toHKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\.NETFramework
be displayed immediately when your code hits a breakpoint. This will also allow control to return to CodeSmith Generator when you continue the
execution of the template from the debugger.

If you are running into issues when trying to debug, run CodeSmith Generator and Visual Studio as an Administrator.

 Troubleshooting

If you are having trouble with the debugger, try using the CLR debugger as that tends to work better.
If you are getting the message, "There is no source code available for the current location.", you need to change the default editor for .cst
files in Visual Studio to be the "Source Code (Text) Editor".
If you are having further issues in Vista, make sure to run CodeSmith Generator with full administrator rights by right clicking and choose
run as administrator.

Outputting Trace and Debug Information

One useful way to gather debugging information when a template is not behaving as you expect is to use the methods of the .NET
 and objects. These objects let your code interact with the Debug pane of the System.Diagnostics.Trace System.Diagnostics.Debug Output

. The two objects have exactly the same members; the only difference between the two is that the object iswindow System.Diagnostics.Trace
active at all times, while the object is only active when you compile your code in .System.Diagnostics.Debug debug mode

http://msdn.microsoft.com/en-us/library/2ac5yxx6(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/6x31ezs1.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/6x31ezs1.aspx

This table summarizes some of the useful members of the Trace and Debug objects:

Member Type Description

Assert Method Checks for a condition, and displays a message if the condition is false.

Fail Method Displays an error message

Indent Method Increases the current IndentLevel by one.

IndentLevel Property Specifies the indent level.

IndentSize Property Specifies the number of spaces in an indent.

Unindent Method Decreases the current IndentLevel by one.

Write Method Writes the given information

WriteIf Method Writes the given information only if a condition is true

WriteLine Method Same as Write but appends a new line character after the information.

WriteLineIf Method Same as WriteIf but appends a new line character after the information.

Viewing the Compiled Template Source Code

When you generate or compile a template, CodeSmith Generator creates a compiled assembly. Sometimes, when debugging a template's output,
it may be very useful to see the source code of what was compiled.

Viewing the Compiled Template Source Code

You can view the compiled source code of the current template by right clicking on a template in the Solution Explorer and selecting properties.
Next, set the CustomTool property value to .TemplateSourceGenerator

Now, when you look at your template in Solution Explorer, you will see a file ending with .g.cs or .g.vb.DependentUpon

If a CSharp template is named Template.cst, the file will be called Template.g.cs

Finally, click on this generated document (E.G., Template.g.cs) to view the compiled template source code.

Using Master Templates

Sub-templates provide a way for you to organize complex code generation processes from a master template. Just as subroutines in a computer
program let you call bits of logic from a main program flow, sub-templates let you call bits of code generation logic from a master template.

To use a sub-template, you must first in the parent template. You can then intoregister the sub-template merge properties from the sub-template
the parent template, to the sub-template, in the sub-template, and .copy properties from the sub-template set properties render the sub-template

Here's a video tutorial on Master Templates!

Registering Sub-Templates

http://msdn.microsoft.com/en-us/library/bb629388.aspx

To register a sub-template, you include a Register directive in the master template. You can include as many Register directives as you like, so
one master template can include multiple sub-templates. Sub-templates can be nested.

<%@ Register Name="Header" Template="Header.cst" MergeProperties="True"
ExcludeProperties="IncludeMeta" %>

Register Directive Attributes

There are four attributes that you can supply to the Register directive. The Name and Template parameters are required; the others are optional.

Name

The Name attribute specifies the type name for the sub-template in the master template. It can be used to create an instance of the sub-template.

Template

The Template attribute specifies the relative path to the sub-template.

MergeProperties

The MergeProperties attribute specifies whether the properties of the sub-template should be dynamically added to the master template's
properties. If you omit this attribute, it defaults to False.

ExcludeProperties

The ExcludeProperties attribute specifies a comma-delimited list of properties to be excluded from merging to the master template's property list.
You may use * as a wildcard in the property list.

Merging Properties into the Parent Template

To merge the properties of a sub-template with a master template, include the attribute in the directiveMergeProperties="True" Register
for the sub-template. When you do this, the properties of the sub-template will be displayed on the property sheet of the main template when the
main template is open in CodeSmith Explorer. This makes it easy to prompt for all the properties that are required for the entire code-generation
process on a single property sheet.

<%@ Register Name="SubTemplate" Template="SubTemplate.cst" MergeProperties="True" %>

Copying Properties from the Parent Template

You may want to share properties between a master template and sub-templates. For example, suppose you are working with a set of
database-oriented templates, and each template defines a string property named . When you prompt for this property in the masterServer
template, only the master template's copy of the property receives a value.

To set the property in the sub-template, you use the method of the master template. This method matches properties fromCopyPropertiesTo
the master template to the sub-template on the basis of name and type. If it finds an exact match, it copies the value from the master template to
the sub-template. This code snippet shows how you can use this method:

// instantiate the sub-template
Header header = this.Create<Header>();

// copy all properties with matching name and type to the sub-template instance
this.CopyPropertiesTo(header);

Setting Properties in a Sub-Template

You can set properties in a sub-template from the main template easily, because they're all available as properties of the instantiated
sub-template object. Here's an example:

// instantiate the sub-template
Header header = this.Create<Header>();

// include the meta tag
header.IncludeMeta = true;

In this case, IncludeMeta is a boolean property defined with a directive in the sub-template. Property

Rendering a Sub-Template

After you've registered a sub-template and set its properties, you can render the sub-template. There are several ways to do this. The first is to
render the sub-template directly to the output of the main template:

// instantiate the sub-template.
Header header = this.Create<Header>();
// render the sub-template to the current output stream.
header.Render(this.Response);

Alternatively, you can render the sub-template to a separate file. This is useful when you want to create multiple output files as part of a single
code-generation process.

// instantiate the sub-template.
Header header = this.Create<Header>();
// render the sub-template to a separate file.
header.RenderToFile("Somefile.txt");

The RenderToFile method has several overloads that allow for greater control when rending content. The overload shown below will prevent the a
generated file from overwriting an already existing file called Somefile.txt.

// instantiate the sub-template.
Header header = this.Create<Header>();
// render the sub-template to a separate file.
// NOTE: If the file exists then an exception will be thrown.
header.RenderToFile("Somefile.txt", false);

The other overloads allow you to use a to control how the content should be merged with existing content. Also you can one ofMerge Strategies
the overloads that takes a string file path or OutputFile to specify the the file that the output is . Dependent Upon

A Sub-Template Example

Here's a simple example so you can see how the various sub-template pieces fit together. This example generates an HTML file from two
templates. First, there's a sub-template that generates an HTML header:

<%@ CodeTemplate Language="C#" TargetLanguage="HTML" %>
<%@ Property Name="Title" Type="System.String" Optional="False" Category="Options"
Description="Page title." %>
<%@ Property Name="CharSet" Type="System.String" Optional="False" Default="windows-1252"
Category="Options" Description="Character set for the page." %>
<%@ Property Name="IncludeMeta" Type="System.Boolean" Default="True" Optional="False"
Category="Options" Description="Include meta tags." %>
<html>
<head>
<% if (IncludeMeta) { %>
<meta http-equiv="Content-Type" content="text/html; charset=<%= CharSet %>">
<% } %>
<title><%= Title %></title>
</head>

Next, the main template generates the body of the HTML file. Note that it uses the sub-template to generate the header:

<%@ CodeTemplate Language="C#" TargetLanguage="HTML" %>
<%@ Property Name="Title" Type="System.String" Optional="False" Category="Options"
Description="Page title." %>
<%@ Property Name="Placeholder" Type="System.String" Optional="True" Category="Options"
Description="Main placeholder text." %>
<%@ Register Name="Header" Template="Header.cst" MergeProperties="True"
ExcludeProperties="IncludeMeta" %>
<% OutputHeader(); %>
<body>
<h1><%= Title %></h1>
<p><%= Placeholder %></p>
</body>
</html>
<script runat="template">
public void OutputHeader()
{
 Header header = this.Create<Header>();
 // include the meta tag
 header.IncludeMeta = true;
 // copy all properties with matching name and type to the sub-template instance
 this.CopyPropertiesTo(header);
 // render the sub-template to the current output stream
 header.Render(this.Response);
}
</script>

When you open the master template, the property sheet shows the Title and Placeholder properties defined in the master template, as well as the
CharSet property defined in the sub-template (because of the MergeProperties attribute), but not the IncludeMeta property (because of the
ExcludeProperties attribute):

The template's output seamlessly merges the output of the sub-template and the output of the main template:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<title>My Web Page</title>
</head>
<body>
<h1>My Web Page</h1>
<p>Lorem Ipsit</p>
</body>
</html>

Writing to Multiple Outputs

CodeSmith Generator lets you send the same output to multiple destinations at one time. To do this, you use the method of theAddTextWriter
CodeSmith Generator Response object. This method lets you add additional objects (or objects of any class derived from TextWriter

) to the list that CodeSmith Generator renders its output to. For example, here's a template that outputs some text to two files at theTextWriter
same time, as well as to CodeSmith Generator 's default output window:

<%@ CodeTemplate Language="C#" TargetLanguage="Text" Description="AddTextWriter Demonstration." %>
<%@ Import Namespace="System.IO" %>
//This template demonstrates using the AddTextWriter method
//to output the template results to multiple locations concurrently.
<script runat="template">
public override void Render(TextWriter writer)
{
 StreamWriter fileWriter1 = new StreamWriter(@"C:\test1.txt", true);
 this.Response.AddTextWriter(fileWriter1);

 StreamWriter fileWriter2 = new StreamWriter(@"C:\test2.txt", true);
 this.Response.AddTextWriter(fileWriter2);

 base.Render(writer);

 fileWriter1.Close();
 fileWriter2.Close();
}
</script>

This technique is quite general. You could have a TextWriter that streams to a socket or to the Windows clipboard or to file or to a database or to
your source code repository or to any other destination you like.

This technique is useful for generating multiple identical copies of the same file. When you need to generate multiple different
files as part of a single code-generation process, you should use one for each file. Call the sub-templates from asub-template
master template and use the method to output each sub-template.RenderToFile

Driving Templates with Metadata

One of the key features of CodeSmith Generator is that you can use many types of metadata in your templates. Template metadata provides the
means for users to interact with templates and customize the output of those templates. You have many choices when defining the metadata in a
template:

You can use any .NET type
You can use CodeSmith Generator's to interact with a databaseSchemaExplorer
You can use the XML support
You can build your own , complete with designer and property set supportcustom metadata sources

Using .NET Types

The easiest way to define metadata is to use one of the scalar .NET types such as System.String or System.Boolean. To define a property using
a .NET type, you use a . CodeSmith Generator automatically allows editing such scalar types directly in its property sheet whenProperty directive
the user executes a template.

Advanced: Using Extended Properties to Define Custom Metadata

Using SchemaExplorer

SchemaExplorer is CodeSmith Generator's built-in interface for working with metadata from databases. You can use the classes in
SchemaExplorer either programmatically or interactively; often, you'll combine the two approaches. For example, you may want to allow the user
to interactively select a database, and then programmatically build a list of all of the tables in the selected database. Here's a template that
demonstrates using SchemaExplorer for this purpose:

<%@ CodeTemplate Language="C#" TargetLanguage="Text" Description="List all database tables" %>
<%@ Property Name="SourceDatabase" Type="SchemaExplorer.DatabaseSchema" Category="Context"
Description="Database containing the tables." %>
<%@ Assembly Name="SchemaExplorer" %>
<%@ Import Namespace="SchemaExplorer" %>
Tables in database "<%= SourceDatabase %>":
<% for (int i = 0; i < SourceDatabase.Tables.Count; i++) { %>
 <%= SourceDatabase.Tables[i].Name %>
<% } %>

Before you can execute this template, you must supply a value for the SourceDatabase property. When you place your cursor in the property
sheet row for this property, CodeSmith Generator will display a builder button (highlighted in green), indicating that there is an external editor
hooked up for this property. CodeSmith Generator automatically uses editors built into SchemaExplorer:

Clicking the builder button opens the Database Picker dialog box. A dropdown list lets you choose from all of the data sources that you have
previously defined on your computer. There's also a builder button to define a new data source:

If you click the builder button, SchemaExplorer opens the Data Source Manager dialog box. Here you can see the type of each existing data
source, and manage your data sources. You can copy, add, edit, or remove data sources from this dialog box.

If you choose to add a new data source, SchemaExplorer opens the Data Source dialog box. To add a new data source, you must provide a
name for the new data source, then select a provider type and type in a connection string.

It's worth noting that CodeSmith Generator ships with many database providers including the following:

ADOXSchemaProvider
ISeriesSchemaProvider
MySQLSchemaProvider
OracleSchemaProvider
PostgreSQLSchemaProvider
SQLAnywhereSchemaProvider
SqlCompactSchemaProvider
SQLiteSchemaProvider
SqlSchemaProvider
VistaDBSchemaProvider

Here's a sample of the output for this template when it's used with the SQL Server Northwind sample database:

Tables in database "Northwind":
 Orders
 ComponentTypes
 Products
 Order Details
 CustomerCustomerDemo
 CustomerDemographics
 Region
 Territories
 EmployeeTerritories
 Employees
 Categories
 Customers
 Shippers
 Suppliers

After the user specifies the SourceDatabase, CodeSmith Generator is able to use it as the root of an object model of the entire database.

Check out this video for more information:

Refer to the for a complete listing of the classes and members within the SchemaExplorerCodeSmith Generator API Reference
library.

Advanced: Using Extended Properties to Define Custom Metadata

The SchemaExplorer Object Model

Starting with a DatabaseSchema object, you can drill down into an object model to obtain further information about the contents of a database
selected by the user. This diagram shows the major components of the SchemaExplorer object model.

SchemaExplorer provides a rich set of collections, objects, and properties that correspond to this object model. For example, the
 object exposes a property, through which you can retrieve a object. The DatabaseSchema Commands CommandSchemaCollection Item

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Manage_Extended_Properties_Through_Schema_Explorer.html

property of this object gives you access to individual objects, each of which corresponds to a single command in the database.CommandSchema
The properties of the Command object allow you to explore the details of the command, retrieving the metadata that you might need to build code
based on the command.

Connection Strings

Valid connection strings in Schema Explorer depend on the provider you're using for a given connection:

If you're using the SqlSchemaProvider, connection strings follow the format used by the .NET property.SqlConnection.ConnectionString

If you're using the ADOXSchemaProvider, connection strings follow the format used by the ADO property.ConnectionString

If you're using the OracleSchemaProvider, please be sure to check out the link below for creating a connection string as well as the following
.how-to article

If you're using the PostgreSchemaProvider, please make sure the following statement is included in your ConnectionString: Preload Reader =
true;

For all SchemaProviders, please be sure to use the proper ConnectionString for the Database Provider you are using. A great resource for
building database ConnectionStrings can be found .here

Choosing Objects

SchemaExplorer implements designers for four other database object types. These are useful when you need to let users select a particular
object or set of objects within a database as part of your template metadata.

TableSchema and TableSchemaCollection

The editor allows selecting a single table:TableSchema

<%@ Property Name="SourceTable" Type="SchemaExplorer.TableSchema" Category="Database"
Description="Select a table." %>

The editor allows selecting a group of tables:TableSchemaCollection

<%@ Property Name="SourceTables" Type="SchemaExplorer.TableSchemaCollection" Category="Database"
Description="Select a set of tables." %>

A property using either of these types will display the Table Picker when the user clicks the Build button in the Properties window. If the property
uses the TableSchema class, the user can select a single object. If the property uses the class, the user can useTableSchemaCollection
Ctrl+click and Shift+click to select multiple objects.

http://msdn.microsoft.com/en-us/library/f28szy5b(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ee252362(v=BTS.10).aspx
http://community.codesmithtools.com/CodeSmith_Community/b/blake/archive/2008/11/04/tips-amp-tricks-connecting-to-an-oracle-schema-with-codesmith.aspx
http://connectionstrings.com/

ViewSchema and ViewSchemaCollection

The editor allows selecting a single view:ViewSchema

<%@ Property Name="SourceView" Type="SchemaExplorer.ViewSchema" Category="Database"
Description="Select a view." %>

The editor allows selecting a group of tables:ViewSchemaCollection

<%@ Property Name="SourceViews" Type="SchemaExplorer.ViewSchemaCollection" Category="Database"
Description="Select a set of views." %>

A property using either of these types will display the when the user clicks the Build button in the Properties window. If the propertyViewPicker
uses the ViewSchema class, the user can select a single object. If the property uses the class, the user can useViewSchemaCollection
Ctrl+click and Shift+click to select multiple objects.

CommandSchema and CommandSchemaCollection

The editor allows selecting a single command:CommandSchema

<%@ Property Name="SourceCommand" Type="SchemaExplorer.CommandSchema" Category="Database"
Description="Select a command." %>

The editor allows selecting a group of tables:CommandSchemaCollection

<%@ Property Name="SourceCommands" Type="SchemaExplorer.CommandSchemaCollection"
Category="Database" Description="Select a set of commands." %>

A property using either of these types will display the Command Picker when the user clicks the Build button in the Properties window. If the
property uses the CommandSchema class, the user can select a single object. If the property uses the class, theCommandSchemaCollection
user can use Ctrl+click and Shift+click to select multiple objects.

ColumnSchema and ColumnSchemaCollection

The editor allows selecting a single command:ColumnSchema

<%@ Property Name="SourceColumn" Type="SchemaExplorer.ColumnSchema" Category="Database"
Description="Select a column." %>

The editor allows selecting a group of tables:ColumnSchemaCollection

<%@ Property Name="SourceColumns" Type="SchemaExplorer.ColumnSchemaCollection" Category="Database"
Description="Select a set of columns." %>

A property using either of these types will display the Column Picker when the user clicks the Build button in the Properties window. If the property
uses the ColumnSchema class, the user can select a single object. If the property uses the ColumnSchemaCollection class, the user can check
the columns to select multiple objects.

Sorting Collections

SchemaExplorer retrieves the various collections in the order that the database presents them. For all practical purposes, this means that the
collections are in a random order. Often, you'll want a collection sorted by name instead. This is easily accomplished by creating a second
collection of the same type and using the method:Sort

TableSchemaCollection tables = new TableSchemaCollection(SourceDatabase.Tables);
tables.Sort(new PropertyComparer("Name"));

After running this code, the new collection will contain all of the tables from the source database, sorted by name.tables

Using Extended Properties

SchemaExplorer allows you to retrieve a great deal of information about objects within your database. If you're using a RDBMS (E.G., SQL
Server) database, you'll find some of the most useful information in the ExtendedProperties collections of the various objects. These collections
contain the extended properties that the RDBMS defines for database objects.

Example

For example, SQL Server defines an extended property that tells you whether a table column is an , which you can retrieve withidentity column
the "CS_IsIdentity" extended property key as shown below.

The ExtendedProperties collection is a dictionary defined with a string key and an object value (E.G., List<string, object>).

Identity Field = <% foreach(ColumnSchema cs in SourceTable.Columns) {
 if(((bool)cs.ExtendedProperties["CS_IsIdentity"].Value) == true) {
 Response.Write(cs.Name);
 }
} %>

A better way to retreive this value would be to use the utility class and ExtendedProperty ExtensionSchemaExplorer.ExtendedPropertyNames
methods.

To use any of the SchemaExplorer Extension methods, please be sure to the namespace.import SchemaExplorer.Extensions

The class contains string constants of all Schema Provider defined extended properties. This givesSchemaExplorer.ExtendedPropertyNames
you Intellisense for extended property key names as well as compile time checking! The The below code sample has been updated to use this
utility class. The example below will show off how to use Extended Properties GetByKey Extension method for retrieving and converting extended
property values to the correct type.

Identity Field = <% foreach(ColumnSchema cs in SourceTable.Columns) {
 if(cs.ExtendedProperties.GetByKey<bool>(SchemaExplorer.ExtendedPropertyNames.IsIdentity) ==
true) {
 Response.Write(cs.Name);
 }
} %>

Default Extended Properties

CodeSmith Generator defines standard extended properties for table columns, view columns, and command parameters:

The ExtendedProperties collection is a dictionary defined with a string key and an object value (E.G., List<string, object>).

Table Column

http://msdn.microsoft.com/en-us/library/ms186775.aspx
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/5d664b18-7a28-1210-813f-a5f56f92c8e9.htm
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/ab892bc6-83a6-e792-6dc6-7165234d7d90.htm
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/5d664b18-7a28-1210-813f-a5f56f92c8e9.htm

Extended Property Key SchemaExplorer.ExtendedPropertyName Property Name Description

CS_Description Description The Description

CS_IsRowGuidCol IsRowGuidColumn The Column is a Row Guid

CS_IsIdentity IsIdentity Identity Column

CS_IsComputed IsComputed Computed Column or Index

CS_IsDeterministic IsDeterministic Column is Deterministic

CS_IdentitySeed IdentitySeed Identity Seed

CS_IdentityIncrement IdentityIncrement Identity Increment

CS_SystemType SystemType The System Type (E.G., System.String)

CS_Default DefaultValue The default value

View Column

Extended Property Key SchemaExplorer.ExtendedPropertyName Property Name Description

CS_Description Description The Description

CS_IsComputed IsComputed Computed Column or Index

CS_IsDeterministic IsDeterministic Column is Deterministic

Command Parameter

Extended Property Key SchemaExplorer.ExtendedPropertyName Property Name Description

CS_Description Description The Description

CS_Default DefaultValue The default value

In addition, every object has a CS_Description extended property, but the standard Description property provides a shortcut to the same
information.

Extended Property Key SchemaExplorer.ExtendedPropertyName Property Name Description

CS_Description Description The Description

Using CodeSmith to Manage Extended Properties

CodeSmith Generator offers an easy way to manage Extended Properties through the Template Explorer's SchemaExplorer Control.

Manually Adding Extended Properties

You can also create your own extended properties within your SQL Server database by using the sp_addextendedproperty stored procedure. For
example, this T-SQL statement adds a Caption property to the ID column of the Customers table:

sp_addextendedproperty 'caption', 'Customer ID', 'user', dbo, 'table', Customers, 'column', id

After you execute this statement in your SQL Server database, the Caption property will show up in this column's ExtendedProperties collection in
CodeSmith Generator.

XML Support

CodeSmith Generator allows you to store metadata in external XML files. To incorporate XML metadata in your templates, you use an
XmlProperty directive:

<%@ XmlProperty Name="PurchaseOrder" Schema="PO.xsd" Optional="False" Category="Data"
Description="Purchase Order to generate packing list for." %>

XmlProperty Directive Attributes

The XmlProperty directive has six possible attributes. The Name attribute is required, and the other attributes are optional.

Name

The attribute is used as the name of the property when it is displayed on the template's property sheet in CodeSmith Explorer. This is alsoName
the variable name that is used to store the value of the property within the template. This must be a legal variable name within the template's
language. For example, if the template uses C# as its language, then the name must follow the rules for C# variables. If a schema is specified, the
variable will point to a strongly typed object model that CodeSmith generates based on the schema. If no schema is specified, it will point to an
instance of the class.XmlDocument

Schema

The Schema attribute specifies an XSD schema to be used to parse the XML file chosen by the user at runtime.

Specifying a schema file allows CodeSmith to supply IntelliSense help for the XmlProperty instance within your template.

If you do not specify a value for the Schema attribute, then the user can select any XML document at runtime, and the property
will return an instance of the XmlDocument class.

Default

The Default attribute is used to set the default value for this property. If you omit this attribute, then CodeSmith Generator does not supply a
default value for the property.

Category

The Category attribute specifies what category this property should appear under in the CodeSmith Explorer property sheet. If you omit this
attribute, CodeSmith Generator will place the property in a category named Misc.

Description

The Description attribute supplies descriptive text to be displayed at the bottom of the property sheet when this property is selected.

Optional

The Optional attribute specifies whether or not this property is optional. If a user does not specify a parameter that is not optional then CodeSmith
Generator will not let them proceed. A value of true means that a value for the property is not required, and a value of false means that a value for
the property is required.

OnChanged

The OnChanged attribute specifies the event handler to fire when the XmlProperty value changes.

RootElement

The RootElement attribute specifies the relative or full path to the locate the Root Xml Element.

XmlProperty does not support all variations and features of XSD schemas. In general, if an XSD schema can be successfully
loaded into the Visual Studio .NET schema designer then it should work in CodeSmith Generator.

Additional Information

You can also check out this video on XML Properties for more information!

XML Property Examples
XML Property With a Schema

Here's an example of using the with a schema. Consider first this XSD file, which defines a simple purchase order structure:XmlProperty directive

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace=http://www.codesmithtools.com/PO
 xmlns:xs=http://www.w3.org/2001/XMLSchema
 xmlns=http://www.codesmithtools.com/PO
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="PurchaseOrder">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="PONumber" type="xs:string"/>
 <xs:element name="CustomerName" type="xs:string"/>
 <xs:element name="CustomerCity" type="xs:string"/>
 <xs:element name="CustomerState" type="xs:string"/>
 <xs:element name="Items">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Item" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="ItemNumber" type="xs:string" use="required"/>
 <xs:attribute name="Quantity" type="xs:integer" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Using this schema file, you can define an XML property that accepts purchase order files at runtime for its metadata:

<%@ CodeTemplate Language="C#" TargetLanguage="Text" Description="Create packing list from XML PO."
%>
<%@ XmlProperty Name="PurchaseOrder" Schema="PO.xsd" Optional="False" Category="Data"
Description="Purchase Order to generate packing list for." %>
Packing List
ref: PO#<%= PurchaseOrder.PONumber %>
Ship To:
<%= PurchaseOrder.CustomerName %>
<%= PurchaseOrder.CustomerCity %>, <%= PurchaseOrder.CustomerState %>
Contents:
<% for (int i = 0; i < PurchaseOrder.Items.Count; i++) { %>
<%= PurchaseOrder.Items[i].ItemNumber %>, Quantity <%= PurchaseOrder.Items[i].Quantity %>
<% } %>

At run time, the PurchaseOrder property will display a builder button in the CodeSmith Generator user interface. Clicking this button opens a file
open dialog box which allows the user to browse for an appropriate XML file to use as a metadata source:

Selecting an appropriate XML file generates the packing list. For example, the user might choose this XML file:

<?xml version="1.0" encoding="UTF-8"?>
<PurchaseOrder xmlns=http://www.codesmithtools.com/PO
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <PONumber>5271</PONumber>
 <CustomerName>John Nelson</CustomerName>
 <CustomerCity>Gamonetta</CustomerCity>
 <CustomerState>MS</CustomerState>
 <Items>
 <Item ItemNumber="HM85" Quantity="12"/>
 <Item ItemNumber="JR82" Quantity="4"/>
 <Item ItemNumber="PR43" Quantity="6"/>
 </Items>
</PurchaseOrder>

With this resulting generated packing list:

Packing List
ref: PO#5271
Ship To:
John Nelson
Gamonetta, MS
Contents:
HM85, Quantity 12
JR82, Quantity 4
PR43, Quantity 6

XML Property Without a Schema

Here's an example of using the directive without a schema. Here's a template that can accept any XML file at runtime:XmlProperty

<%@ CodeTemplate Language="VB" TargetLanguage="Text" Description="List top-level nodes in an XML
file." %>
<%@ XmlProperty Name="TargetFile" Optional="False" Category="Data" Description="XML file to
iterate." %>
<%@ Assembly Name="System.Xml" %>
<%@ Import Namespace="System.Xml" %>
Top-level nodes:
<% Dim currNode as XmlNode
currNode = TargetFile.DocumentElement.FirstChild
Do Until currNode Is Nothing%>
 <%= currNode.InnerXml %>
<% currNode = currNode.NextSibling()
Loop %>

This template doesn't define a schema for the property, so that property is presented to the template as an object.TargetFile XmlDocument
Thus, it can be processed with the standard XML DOM methods and properties such as and . In this case, theFirstChild NextSibling
template simply loops through the top-level nodes of the document and copies them to the output. For example, if you choose this document as
the :TargetFile

<?xml version="1.0" encoding="UTF-8"?>
<Books>
 <Book>UML 2.0 In a Nutshell</Book>
 <Book>The Best Software Writing</Book>
 <Book>Coder to Developer</Book>
 <Book>Code Complete</Book>
</Books>

Then the template's output looks like this:

Top-level nodes:
 UML 2.0 In a Nutshell
 The Best Software Writing
 Coder to Developer
 Code Complete

Custom Metadata Sources

When you need something beyond the built-in support for .NET types, SchemaExplorer, and XML properties, it's time to explore custom metadata
sources. CodeSmith Generator lets you hook just about anything you like to the property grid to use as a metadata source. You'll need to do
some coding to enable your custom metadata sources to work smoothly with the rest of CodeSmith Generator, though. The two tasks you may
need to accomplish are:

Adding designer support
Adding property set support

Adding Designer Support

If your custom metadata requires a complex user interface (anything beyond the simple text edit control provided by the property grid) to edit,
you'll need to add designer support. Otherwise, there won't be any way for the user to enter values for properties that make use of your metadata
type. To add designer support, you'll need to build an editor for your type or use an existing UITypeEditor. An editor is simply a class that
subclasses the .NET class.System.Drawing.Design.UITypeEditor

You can find the source code for several CodeSmith Generator custom designers in your extracted template folder. The default
template folder is located in the My Documents folder (Documents\CodeSmith
Generator\Samples\<Version>\Projects\CSharp\CustomPropertiesSample\

For example, DropDownEditorProperty is a class that wraps up a string and a boolean value together into a single piece of metadata. To edit this
data, it provides a class, DropDownEditorPropertyEditor, which derives from UITypeEditor. The declaration of DropDownEditorProperty is
decorated to indicate that this is the editor class that CodeSmith Generator should use in the property grid:

http://msdn.microsoft.com/en-us/library/system.drawing.design.uitypeeditor.aspx

[Editor(typeof(CodeSmith.Samples.DropDownEditorPropertyEditor),
typeof(System.Drawing.Design.UITypeEditor))]
public class DropDownEditorProperty

In a template, you can use this metadata type just like any other (although you need to remember to reference its assembly, because CodeSmith
Generator doesn't know about this type by default):

<%@ Property Name="DropDownEditorProperty" Type="CodeSmith.Samples.DropDownEditorProperty"
Category="Options" Description="This property uses a custom dropdown editor." %>
<%@ Assembly Name="SampleCustomProperties" %>

When the user wants to edit the DropDownEditProperty and clicks in the property sheet, CodeSmith Generator will display the custom designer:

For more information on building custom designers please read .Building custom UITypeEditors

Using an predefined UITypeEditor

Here is a compiled list of all UITypeEditors that CodeSmith Generator ships with.

Name Assembly Obsolete Description

CodeSmith.Engine.
CodeFileParserPicker

CodeSmith.Engine Allows you to browse for a CSharp or VisualBasic class file.

CodeSmith.Engine.
XmlPropertyFilePicker

CodeSmith.Engine This type editor can be used on a class that supports XML
serialization to allow the user to pick an XML file and have that
XML file deserialized into the target class.

CodeSmith.Engine.
XmlSchemaFilePicker

CodeSmith.Engine Allows you to browse for an XSD Schema.

CodeSmith.CustomProperties.
AssemblyFilePicker

CodeSmith.CustomProperties Allows you to browse for an assembly.

CodeSmith.CustomProperties.
FileNameEditor

CodeSmith.CustomProperties Allows you to browse for a file.

CodeSmith.CustomProperties.
NameValueCollectionEditor

CodeSmith.CustomProperties YES Allows you to quickly edit an NameValueCollection.

CodeSmith.CustomProperties.
StringCollectionEditor

CodeSmith.CustomProperties YES Allows you quickly edit a string collection.

CodeSmith.CustomProperties.
XmlSerializedFilePicker

CodeSmith.CustomProperties Allows you to browse for an Xml file.

It is worth noting that the .NET Framework also ships with many built-in UITypeEditors.

Adding Property Set Support

By default, CodeSmith Generator will try to serialize your custom metadata types automatically using the JSON.NET library. So for most
situations, you won't need to do anything special to add CodeSmith Generator Project property serialization support.

If your custom metadata type does not work by default or requires special formatting to save to XML (for instance, it includes information that you
want to format in a particular way in the XML file), you'll need to add a property serializer. Otherwise, there won't be any way for the user to save
an XML property set file that includes an instance of your metadata type. To add property set support, you'll need to build a serializer for your
type. A serializer is simply a class that implements the CodeSmith.IPropertySerializer interface.

You can find the source code for several CodeSmith Generator custom designers in your extracted template folder. The default
template folder is located in the My Documents folder (Documents\CodeSmith
Generator\Samples\<Version>\Projects\CSharp\CustomPropertiesSample\

For example, DropDownEditorProperty is a class that wraps up a string and a boolean value together into a single piece of metadata. To serialize
this data, it provides a class, DropDownEditorPropertySerializer, which implements IPropertySerializer. The declaration of
DropDownEditorProperty is decorated to indicate that this is the serializer class that CodeSmith Generator should use:

[PropertySerializer(typeof(CodeSmith.Samples.DropDownEditorPropertySerializer))|PropertySerializer(typeof(CodeSmith.Samples.DropDownEditorPropertySerializer))]
public
class DropDownEditorProperty

Generating from Source Code

One of the awesome features of CodeSmith Generator is that you can generate from any kind of metadata. A new feature to CodeSmith
Generator is the CodeFileParser which allows you to generate off of existing source code. The CodeSmith.CodeFileParser class can parse any
string or file and return an easy to use DOM object.

Requirements

In order for the CodeFileParser requires that the passed in string or file contents contain valid CSharp or VisualBasic code. The CodeFileParser
uses the under the hood to create the DOM object.public NRefactory libraries

The CodeFileParser Object

It is very easy to create a new CodeFileParser Instance in code by using the overloaded constructors below. Also, you can use the
CodeFileParser by creating a template property. All you need to do is add a new with the type CodeSmith.CodeFileParser toProperty Directive
your template.

// There are overloads that don't require basePath or parseMethodBodies.
public CodeFileParser(string fileName, string basePath, bool parseMethodBodies)

 // There are overloads that don't require parseMethodBodies.
public CodeFileParser(string source, SupportedLanguage language, bool parseMethodBodies)

The Selection Methods

Most of the methods in NRefactory return position information in the form of Location objects, which, while very descriptive, are not the easiest
thing to use when trying to take substrings or selections from the existing code.
Because this can be very important when using the object DOM to assist with code generation, we have added several methods to assist with
getting substrings and selections; these methods take in Location objects and return strings.

http://forums.asp.net/post/1815965.aspx
http://www.icsharpcode.net/OpenSource/SD/Download/

public string GetSectionFromStart(Location end)
public string GetSectionToEnd(Location start)
public string GetSection(Location start, Location end)

The CodeDomCompilationUnit

To quick and easily walk the DOM, the CodeFileParser exposes a (lazy loaded) property that returns System.CodeDom.CodeCompileUnit object.
This is a standard .NET object that contains a complete code graph; this object is the quickest and easiest way to traverse your metadata.
For more information about the CodeCompileUnit, please check out .MSDN article

The Visitor

When more advanced or customized information is required, the CodeFileParser exposes the CompilationUnit object, which is capable of taking
in a visitor object to traverse the DOM and bring back specific data.
This is an NRefactory feature, and it only requires that your visitor object implement the AbstractAstVisitor class.

Example

We are already using the CodeFileParser in CodeSmith Generator and our Plinqo templates! In CodeSmith Generator we have implemented the
CodeFileParser in our ; it allows us to parse the existing code file and determine where we need to insert our newInsertClassMergeStrategy
content. In we use the CodeFileParser to assist with our MetaData class merge; it allows us to make a map of all thePLINQO for Linq-to-SQL
properties in that class and then preserve their attributes during regeneration.

<%@ CodeTemplate Language="C#" TargetLanguage="Text" Debug="False" CompilerVersion="v3.5" %>
<%@ Property Category="2.Class" Name="TheFile" Type="CodeFileParser" Optional="False" %>
<%@ Assembly Name="CodeSmith.CodeParser" %>
<%@ Import Namespace="System.CodeDom" %>

<% foreach(CodeNamespace n in TheFile.CodeDomCompilationUnit.Namespaces) { %>
 Namespace: <%= n.Name %>
 <% foreach(CodeTypeDeclaration t in n.Types) { %>
 Type: <%= t.Name %>
 <% foreach(CodeTypeMember m in t.Members) { %>
 Member: <%= m.Name %>
 <% } %>
 <% } %>
<% } %>

Advanced Topics

Advanced Topics covers the following sections:

Upgrading CodeSmith Generator
Using the CodeSmith Generator API
Auto Executing Generated SQL Scripts
Merge Strategies
Active vs. Passive Generation
Template Caching
Building a Custom Schema Provider for SchemaExplorer
Using CodeSmith.CustomProperties
CodeSmith.BaseTemplates
Building a custom UITypeEditor
Setting up a DataDirectory for use in Connection Strings
Version Control Support

Auto Executing Generated SQL Scripts

If you're generating SQL scripts, it can be useful to execute those scripts right after you've generated them. That way, when you generate scripts
that build new objects in a database, you can finish the process by actually building the objects.

The BaseTemplates.ScriptUtility object provides an ExecuteScript method that you can use for this purpose. If you want to execute the script
immediately after it's been generated, it's convenient to override the template's OnPostRender method to do so. Here's an example of doing so,

http://msdn.microsoft.com/en-us/library/system.codedom.codecompileunit.aspx

adapted from the StoredProcedures.cst template that ships with CodeSmith Generator:

protected override void OnPostRender(string result)
{
 // execute the output on the same database as the source table.
 CodeSmith.BaseTemplates.ScriptResult scriptResult =

CodeSmith.BaseTemplates.ScriptUtility.ExecuteScript(this.SourceTable.Database.ConnectionString,
 result, new System.Data.SqlClient.SqlInfoMessageEventHandler(cn_InfoMessage));
 Trace.Write(scriptResult.ToString());
 base.OnPostRender(result);
}

In this example, SourceTable is a property of type SchemaExplorer.TableSchema. Depending on what metadata you're prompting the user for,
you'll need to adjust that part of the code to get a connection to the database where the generated script should be executed.

Merge Strategies

Merge strategies answer the question: How do I customize generated code without losing my customizations when the code is regenerated?
 CodeSmith Generator offers you a choice of two different merge strategies:

InsertRegion Merge Strategy
PreserveRegions Merge Strategy
InsertClass Merge Strategy

CodeSmith Generator ships with various Merge Strategy sample templates that can be found in the under the following folder:Template Explorer
\Examples\Merge.

Merge Strategies are supported using the and to generate code. CodeSmith Console Application CodeSmith Project File

Additional Information

InsertClass Merge Strategy

The InsertClass Merge Strategy is useful when you want to insert your template output into a previously existing class in the output file. At first this
may sound very similar to the Insert Region Merge Strategy, and indeed it did start out that way; however, this Merge Strategy has many
additional settings and features that separate it from it's other fellow Merge Strategies, and that make it a very robust and powerful tool.

Configuration Options

I think the best way to describe this Merge Strategy is through example; but before we can do that, we must first go over it's configuration options.

Language String,
Required

Only Support C# and VB.

ClassName String,
Required

Name of the class to insert into.

PreserveClassAttributes Boolean,
defaults
to False

Whether or not the merge should preserve the existing classes attributes. By default, the merge
tries to replace the entire existing class, which includes the attributes on the top of the class; this
option leaves the attributes from the top of the original class.

OnlyInsertMatchingClass Boolean,
defaults
to False

Insert the whole template output or just the matching class.

MergeImports Boolean,
defaults
to False

Merge the import/using statements of the existing file and generated output.

NotFoundAction Enum,
defaults
to None

What to do if the class is not found in the existing file. There are three options:

None: Don't merge anything, just leave the existing file as is.

InsertAtBottom: Append the output of the template to the bottom of existing file.

InsertInParent. Insert the output of the template at the bottom of a speficied parent section
(specified by the NotFoundParent property).

NotFoundParent String,
no
default

If you specified InsertInParent for the NotFoundAction configuration, you must specify a name for
the parent region. This can be the name of a Region or a Class.

Example Configuration...

Language: C#
ClassName: "Pet"
PreserveClassAttributes: True
OnlyInsertMatchingClass: True
MergeImports: True

Existing File

using System;
using System.ComponentModel.DataAnnotations;
namespace Petshop
{
 [ScaffoldTable(true)]
 public class Pet
 {
 public int Age { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 }
}

The Generated Output

using System;
using System.Text;
namespace Petshop
{
 public class Pet
 {
 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string FullName
 {
 get { return String.Format("{0} {1}", FirstName, LastName); }

 }
 }
}

Insert Class Merge Strategy Result!

using System;
using System.ComponentModel.DataAnnotations;
using System.Text;
namespace Petshop
{
 [ScaffoldTable(true)]
 public class Pet
 {
 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string FullName
 {
 get { return String.Format("{0} {1}", FirstName, LastName); }

 }
 }
}

InsertRegion Merge Strategy

The InsertRegion merge strategy is useful when you need to generate a single region of code within a file that is otherwise not authored by
CodeSmith Generator. The file must already exist with the appropriate region marked. CodeSmith Generator preserves the rest of the file
untouched. When using the InsertRegion merge strategy, you specify an initialization string in this format:

RegionName=<RegionName>;Language=<Language>

For example,

/merge:InsertRegion="RegionName=Sample Generated Region;Language=C#;"

 Given this initialization string, CodeSmith Generator will search for a region named "Sample Generated Region" marked by C# style region
markers. The generated code will be inserted in place of the contents of this region. The Language attribute in the initialization string is a key into
the HKEY_CURRENT_USER\Software\CodeSmith\<VERSION>\MergeStrategyAlias registry node. This node contains regular expressions for
defining the region markers for each supported language. By default, CodeSmith Generator recognizes region markers for VB, C#, and T-SQL,
but you can add your own regular expressions to the file to extend this support if you need to.

If you do not specify a Language attribute in the initialization string, then the TargetLanguage attribute in the template's
CodeTemplate directive is used as a key instead.

Example

Here's an example so you can see how all the pieces fit together. First, a template, Copyright.cst, that can generate boiler plate copyright notices
in a format suitable for insertion in Visual Basic code:

<%@ CodeTemplate Language="VB" TargetLanguage="VB" Description="Copyright notice generator." %>
<%@ Property Name="CompanyName" Type="System.String" Category="Strings" Description="Your company
name." %>
<%@ Property Name="ClientName" Type="System.String" Category="Strings" Description="Client company
name." %>
' This module is delivered as licensed content as defined
' in the contract between <%= ClientName %> and <%= CompanyName %>.
' Copyright (c) <%= System.DateTime.Now.Year %> <%= CompanyName %>
' All other rights reserved.

Next, the Copyright.xml property set XML file with metadata for this template:

<?xml version="1.0" encoding="utf-8"?>
<codeSmith>
 <propertySet>
 <property name="CompanyName">CodeSmith Tools, LLC</property>
 <property name="ClientName">Doe Industries</property>
 </propertySet>
</codeSmith>

HelloWorld.vb is a Visual Basic source code file with a region suitable for inserting the generated copyright notice. Note that this file also contains
some code that CodeSmith Generator should leave untouched:

Public Class HelloWorld
#Region "Copyright Notice"
 'CodeSmith will insert the copyright notice here
#End Region
 Public Sub New()
 End Sub
 Public Sub SayHello()
 ' CodeSmith will leave this code intact
 MessageBox.Show("Hello World")
 End Sub
End Class

The result is to change HelloWorld.vb to look like this:

Public Class HelloWorld
#Region "Copyright Notice"
' This module is delivered as licensed content as defined
' in the contract between Doe Industries and CodeSmith Tools, LLC.
' Copyright (c) 1973 CodeSmith, LLC
' All other rights reserved.
#End Region
 Public Sub New()
 End Sub
 Public Sub SayHello()
 ' CodeSmith will leave this code intact
 MessageBox.Show("Hello World")
 End Sub
End Class

CodeSmith Generator preserves everything outside of the specified region, including the region markers. This means that you can change the
metadata for the generation process and regenerate as often as you want without affecting anything outside of the specified region.

PreserveRegions Merge Strategy

The PreserveRegions merge strategy is useful when you need to preserve multiple custom regions in a file that is otherwise authored by
CodeSmith Generator. The file must already exist with the custom sections marked by appropriate region markers. CodeSmith

Generator transfers the marked regions to the template output when regenerating the file. When using the PreserveRegions merge strategy, you
specify an initialization string in this format:

RegionNameRegex=<RegexExpression>;Language=<Language>

 For example,

RegionNameRegex=^[\t]*(?i:Custom);Language=T-SQL;

Given this initialization string, CodeSmith Generator will search for a region named "Sample Generated Region" marked by C# style region
markers. The generated code will be inserted in place of the contents of this region. The Language attribute in the initialization string is a key into
the HKEY_CURRENT_USER\Software\CodeSmith\<VERSION>\MergeStrategyAlias registry node. This node contains regular expressions for
defining the region markers for each supported language. By default, CodeSmith Generator recognizes region markers for VB, C#, and T-SQL,
but you can add your own regular expressions to the file to extend this support if you need to.

If you do not specify a Language attribute in the initialization string, then the TargetLanguage attribute in the template's
CodeTemplate directive is used as a key instead.

Here's an example so you can see how all the pieces fit together. First, a template, CustomClass.cst. Note that the template defines two empty
C# regions. These are the regions that will be used to preserve custom code that already exists in the output file.

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Description="Custom class generator." %>
<%@ Property Name="ClassName" Type="System.String" Description="Name of the class." %>
#region Keep copyright
#endregion

class <%= ClassName %>
{
 public <%= ClassName %>()
 {
 // Insert default constructor code here
 }

 #region Keep custom methods
 #endregion
}

Next, the existing output file, Engine.cs:

#region Keep copyright
Copyright (c) 1973 CodeSmith Tools, LLC
#endregion

class Engine
{
 public Engine()
 {
 // Insert default constructor code here
 }

 #region Keep custom methods
 public string UniqueID()
 {
 return("E8472");
 }
 #endregion
}

And the resulting changes to Engine.cs:

#region Keep copyright
Copyright (c) 1973 CodeSmith LLC
#endregion

class Driver
{
 public Driver()
 {
 // Insert default constructor code here
 }

 #region Keep custom methods
 public string UniqueID()
 {
 return("E8472");
 }
 #endregion
}

Defining Your Own Merge Strategy

Merge strategies are carried out by classes that implement the interface. After defining your own mergeCodeSmith.Engine.IMergeStrategy
strategy, there are two ways that you can use it. First, you can specify a fully-qualified assembly name when calling the merge strategy from the
command line:

/merge:MyMergeAssembly.MyMergeStragegy="MergeParameters=Sample Merge Parameters;Language=C#;"

Also, you can register your merge strategy with CodeSmtih Generator. This allows you to refer to your merge strategy by name and not by the
types FullName.

Adding your merge strategy to the alias list allows you to call it by name when you use the /merge switch.

To do this, you will need to add a registry entry to the following node:

HKEY_CURRENT_USER\Software\CodeSmith\<VERSION>\MergeStrategyAlias\<NUMBER THAT DOESN'T EXIST (E.G.,
5)>

Finally, you will need to create the following string registry values: Name and TypeName. Here is an entry of an example that ships with
CodeSmith Generator, the contents of the code below is an .registry export

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\CodeSmith\<VERSION>\MergeStrategyAlias\5]
"Name"="PreserveRegions"
"TypeName"="CodeSmith.Engine.PreserveRegionsMergeStrategy,CodeSmith.Engine"

Active vs. Passive Generation

Broadly speaking, there are two different types of code generators: passive code generators and active code generators.

Passive code generators generate code once and then give up all responsibility for it. The wizards and builders that you find in modern IDEs are
typically passive code generators. They're good for coming up with code that the developer later customizes, but once the code has been
generated, a passive code generator can't regenerate it with changes.

In contrast, are designed to maintain a link with the code that is generated over the long term by allowing the generator toactive code generators
be run multiple times over the same code. The key point to keep in mind about active code generators is that the template is the source code.

http://codesmithtools.com/help/##GeneratorAPI.chm/html/4a67e55e-e98f-d1c5-3bd7-ad923a6e2147.htm
http://www.akadia.com/services/windows_registry_tutorial.html

Suppose you're generating 500 class files from a single template. With an active code generator, if you find a bug in the architecture of those
classes (say, you've made a mistake in the way that you're handling object persistence), it's not a huge problem. You just fix the one template and
regenerate the 500 classes. This obviously saves you an incredible amount of time over fixing the same bug over and over again in 500 separate
class files.

But what happens when a template can't generate everything that needs to appear in the source code file? Suppose some of those 500 classes
need custom methods, and the custom methods are different in different classes. For an active code generator to be effective, it must provide
some way for a developer to customize its output, and then allow code regeneration without destroying those customizations.

By default, CodeSmith Generator doesn't allow for custom code in the files that it generates. When you execute a template, it overwrites any
existing output file completely. But there are ways to use CodeSmith Generator in conjunction with custom code. Here are three strategies to
enable active code generation and custom code together with CodeSmith Generator:

Use inheritance
Use merge strategies
Use .NET 2.0 partial classes

Using Inheritance to Enable Active Generation

One way to enable active code generation with CodeSmith Generator is to use CodeSmith Generator to generate a base class, and then to
customize a derived class. When you regenerate the base class, CodeSmith Generator doesn't touch the code in the derived class.

As a simple example, you might design this template to use in a financial application:

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Description="Base class generator." %>
<%@ Property Name="ClassName" Type="System.String" Description="Name of the class." %>
<%@ Property Name="ConstructorParameterName" Type="System.String" Description="Constructor
parameter name." %>
<%@ Property Name="ConstructorParameterType" Type="System.String" Description="Data type of the
constructor parameter." %>
class <%= ClassName %>
{
 <%= ConstructorParameterType %> m_<%= ConstructorParameterName %>;

 public <%= ClassName %>(<%= ConstructorParameterType %> <%= ConstructorParameterName %>)
 {
 m_<%= ConstructorParameterName %> = <%= ConstructorParameterName %>
 }
}

You might execute this template with the following metadata:

The resulting generated class looks like this:

class Account

{
 int m_balance;

 public Account(int balance)
 {
 m_balance = balance
 }
}

With the generated code stored in Account.cs, you could then write a second class by hand and store it in Checking.cs:

class Checking : Account

{
 public Checking : base(0)
 {
 }
}

Now, suppose that your requirements change and you decide that the account balance should really be a floating-point value. You can change
the ConstructorParameterType property to double, regenerate the Account.cs file, and recompile without touching the handwritten code in
Account.cs. As long as you don't insert any custom code directly in the base class, you can regenerate that class as often as you like.

Using Merge Strategies to Enable Active Generation

A second way to enable active code generation with CodeSmith Generator is to use the with CodeSmith Generator Console Application merge
 to generate code. Merge strategies allow you to generate specific portions of a file, while allowing the developer to customize thestrategies

remainder of the file. Merge strategies provide a flexible way to enable active code generation, provided that developers maintain the discipline to
avoid putting custom code inside of the regions that will be overwritten by CodeSmith Generator.

For example, consider this template for generating HTML pages with some standard scaffolding around a user-entered body:

<%@ CodeTemplate Language="C#" TargetLanguage="HTML" %>
<%@ Property Name="Title" Type="System.String" Optional="False" Category="Options"
Description="Page title." %>
<%@ Property Name="CharSet" Type="System.String" Optional="False" Default="windows-1252"
Category="Options" Description="Character set for the page." %>
<%@ Property Name="IncludeMeta" Type="System.Boolean" Default="True" Optional="False"
Category="Options" Description="Include meta tags." %>
<%@ Property Name="Copyright" Type="System.String" Optional="False" Default="Copyright (c)
MyCompany.com" Category="Options" Description="Character set for the page." %>
<html>
<head>
<% if (IncludeMeta)
{ %>
<meta http-equiv="Content-Type" content="text/html; charset=<%= CharSet %>">
<% } %>
<title><%= Title %></title>
</head>
<body>
<h1><%= Title %></h1>
<!- region Keep body ->
<!- endregion ->
<p><%= Copyright %></p>
</body>
</html>

Given this template, you can use the to enable active code generation. As long as the user limits their changes toPreserveRegion Merge Strategy
the "Keep body" region, you can regenerate the meta tag, title, and copyright statement for the page as often as you like without destroying their
changes.

To successfully use the PreserveRegion Merge Strategy with this template, you need to define the region markers for the HTML
template:

<languageRegionDefinitions>
 <languageKeyList>
 <key>HTML</key>
 </languageKeyList>
 <regionStartRegex>[\t]\<!--#?(?i:region)(?<name>[\r\n])?\r?\n</regionStartRegex>
 <regionEndRegex>^[\t]\<!--#?(?i:endregion.\r?\n</regionEndRegex>
</languageRegionDefinitions>

Using Partial Classes to Enable Active Generation

.NET 2.0 offers a new feature that enables active code generation scenarios in both C# and Visual Basic .NET: partial classes. With partial
classes, the code for a single class can be split across multiple class declarations, in one or more files. At compile time, the compiler locates all of
the pieces of the class and assembles them into a single complied class.

In C#, partial class definitions look like this:

partial class Class1
{
 public void Method1
 {
 // code to implement Method1
 }
}

partial class Class1
{
 public void Method2
 // code to implement Method2
 }
}

In Visual Basic, the same example looks like this:

Partial Public Class Class1
 Public Sub Method1
 ' Code to implement Method1
 End Sub
End Class

Partial Public Class Class1
 Public Sub Method2
 ' Code to implement Method2
 End Sub
End Class

In either case, you can enable active generation by generating the code for Method1, while keeping the handcrafted code for Method2 in a
separate file, untouched by CodeSmith Generator. At compile time, the appropriate compiler will knit the two files together into a single unified
class.

Template Caching

CodeSmith Generator uses a technique called template caching to speed up the process time of generating templates. If the template's content
and dependencies have not changed, CodeSmith Generator is able to use the already compiled assembly to render the template's output, rather
than recompiling the template.

For CodeSmith Generator to be able to use template caching, the template must be unchanged since the last time it was compiled. To determine

this, CodeSmith Generator checks the source code of the template for changes, and also recurses into any templates and source files referenced
through or directives.Assembly Register

Template caching makes a big difference in the performance of CodeSmith Generator when you're repeatedly executing the same template
without modifying the template itself. You'll see a nice performance boost when you just execute a template (the Properties window will open
more quickly), but the real benefit comes when you integrate CodeSmith Generator into your build process. With template caching, using
CodeSmith Generator through the process or is substantially faster.batch generation CodeSmith Generator Console Application

Version Control Support

Exclusive Checkouts

In CodeSmith Generator 6.0, we made some changes that will help users who are using exclusive checkout version control systems like Microsoft
Team Foundation Server (TFS), Vault and Visual SourceSafe. In the past, if you generated a bunch of files using CodeSmith Generator, it would
overwrite the file contents and change the modified date on files even if the generated content was exactly the same as the existing content. This
would cause the version control system to checkout every single file and treat them as if they were changed and needed to be checked in. Most
version control systems would then see that the content hadn’t actually changed and ignore the check-in request, but it was still a pain when you
went to check-in and would see hundreds of modified files in the list.

We also went through a big round of testing to make sure that everything works as expected using the exclusive checkout systems inside of
. When you make a change to a , it is automatically checked out as you would expect. We tried to make sureVisual Studio Generator Project file

everything works as smoothly as possible.

Template Explorer

 has rich integration with Windows which also includes all of your Windows Explorer context menus. This gives you the ability toTemplate Explorer
update from source control and much more. The image below shows the ability to update or commit to a SVN repository using the Windows
Explorer context menus.

Building a Custom Schema Provider for SchemaExplorer

If you have a custom data source that looks like a database (that is, it exposes data in tables and columns, perhaps with indexes, views, and
commands), you may find it convenient to hook your data source into SchemaExplorer. If you do this, users will be able to use the standard
SchemaExplorer to retrieve data from your data source, and you can use the to workuser interface components SchemaExplorer object model
with the data in your templates.

You can integrate your own data with SchemaExplorer by building a custom Schema Provider. In this tutorial we will show you how to build and
debug a custom Schema Provider.

You can find the source code for all of CodeSmith Generators' Schema Providers in your extracted templates folder. The default
template folder is located in the My Documents folder. You can find all of the extracted Schema Provider source code in the
following directory: Documents\CodeSmith Generator\Samples\<Version>\Projects\CSharp\

Creating a Custom Schema Provider

You can integrate your own data with SchemaExplorer by building a custom schema provider. To create your own schema provider simply create
a new assembly which includes a public class that implements the interface. Also, the assembly nameSchemaExplorer.IDbSchemaProvider
must end with (for example, SchemaExplorer.Custom). All of the CodeSmith Generator SchemaSchemaProvider.dll SchemaProvider.dll
Providers are prefixed with " " (E.G., SchemaExplorer.SqlSchemaProvider.dll). It is recommended that you also choose to followSchemaExplorer.
this naming convention.

It is recommended to follow the naming pattern defined above as it will ensure that an assembly is compiled that follows our
naming conventions. Please note that when looking at other provider source code, a default namespace willSchemaExplorer
be used. It is not required that your SchemaProvider reside in a namespace named SchemaExplorer.

You can find the source code for all of CodeSmith Generators' Schema Providers in your extracted templates folder. The default
template folder is located in the My Documents folder. You can find all of the extracted Schema Provider source code in the
following directory: Documents\CodeSmith Generator\Samples\<Version>\Projects\CSharp\

Creating a new Schema Provider

The next step is to create a new Schema Provider by opening up Visual Studio and add a new CSharp or Visual Basic Class Library named
. Please note that this can be any name that you choose as long as you follow the naming criteriaSchemaExplorer.CustomSchemaProvider

specified above.

Once the project has been created, we will want to rename the Class1.cs file to CustomSchemaProvider.cs and rename the class name

to CustomSchemaProvider.

Adding CodeSmith Generator References

We will now add references to our new Class Library project so we can start implementing the SchemaExplorer Interfaces that allows CodeSmith
Generator to consume our new Schema Provider. You will need to navigate to theNote: To add a project reference, please see this guide.
CodeSmith Generator Program Files folder and add a reference to the following two assemblies: and AddIns\SchemaExplorer.dll

. The references should now show up in the Visual Studio Solution Explorer Tool Window.bin\CodeSmith.Core.dll

Inheriting the SchemaExplorer Schema Provider Interfaces

Now it is time to implement the SchemaExplorer Interfaces so CodeSmith Generator can talk to the new provider. The main Interface that is
required is called SchemaExplorer.IDbSchemaProvider. This interface implements the core functionality for populating the SchemaExplorer
objects (E.G., TableSchema, ColumnSchema, etc...). There is a second interface that you can implement
called SchemaExplorer.IDbConnectionStringEditor. When this interface is implemented, it tells CodeSmith Generator that there is an available
ConnectionString designer and allows you to show a designer when the user clicks on the designer button.

You can find the source code for all of CodeSmith Generators' Schema Providers in your extracted templates folder. The default
template folder is located in the My Documents folder. You can find all of the extracted Schema Provider source code in the
following directory: Documents\CodeSmith Generator\Samples\<Version>\Projects\CSharp\

It is highly recommended to take a look at the existing Open Source Schema Provider source code for all of the CodeSmith Generator Schema
Providers as a reference when building a new Schema Provider. This can be found in your My Documents folder as described in the tip above.
After we have implemented the two interfaces above, our new CustomSchemaProvider class should look like this:

using System;

namespace SchemaExplorer.CustomSchemaProvider
{
 public class CustomSchemaProvider : SchemaExplorer.IDbSchemaProvider,
SchemaExplorer.IDbConnectionStringEditor
 {
 }
}

The next step is to implement the interfaces defined above. I told Visual Studio to implement the interfaces to save me from writing a lot of the
simple implementation details. Below is what the default implementation looks like after it has been created by Visual Studio.

#region Implementation of IDbSchemaProvider

http://msdn.microsoft.com/en-us/library/wkze6zky(v=VS.100).aspx

/// <summary>
/// Gets the name of the schema provider (E.G. SqlSchemaProvider).
/// </summary>
public string Name { get; private set; }

/// <summary>
/// Gets the description for the schema provider (E.G. SQL Server Schema Provider)..
/// </summary>
public string Description { get; private set; }

/// <summary>
/// Gets the name of the database.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <returns>The name of the database</returns>
public string GetDatabaseName(string connectionString)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the extended property collection for a given schema object.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="schemaObject">Any type that derives from SchemaObjectBase. (E.G. DatabaseSchema,
TableSchema, ColumnSchema, ViewSchema, ViewColumnSchema, IndexSchema, CommandSchema,
ParameterSchema, PrimaryKeySchema, TableKeySchema)</param>
/// <returns>An array of ExtendedProperties for a specific SchemaObjectBase.</returns>
public ExtendedProperty[] GetExtendedProperties(string connectionString, SchemaObjectBase
schemaObject)
{
 throw new NotImplementedException();
}

/// <summary>
/// Sets the extended properties.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="schemaObject">Any type that derives from SchemaObjectBase. (E.G. DatabaseSchema,
TableSchema, ColumnSchema, ViewSchema, ViewColumnSchema, IndexSchema, CommandSchema,
ParameterSchema, PrimaryKeySchema, TableKeySchema)</param>
public void SetExtendedProperties(string connectionString, SchemaObjectBase schemaObject)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets all of the tables available in the database.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="database">The database schema.</param>
/// <returns>An array of tables for a specific database.</returns>
public TableSchema[] GetTables(string connectionString, DatabaseSchema database)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets all columns for a given table.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="table">The table schema.</param>
/// <returns>An array of view columns for a specific table.</returns>
public ColumnSchema[] GetTableColumns(string connectionString, TableSchema table)

{
 throw new NotImplementedException();
}

/// <summary>
/// Gets all the views available for a given database.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="database">The database schema.</param>
/// <returns>An array of views for a specific database.</returns>
public ViewSchema[] GetViews(string connectionString, DatabaseSchema database)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the columns for a given view.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="view">The view schema.</param>
/// <returns>An array of view columns for a specific view.</returns>
public ViewColumnSchema[] GetViewColumns(string connectionString, ViewSchema view)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the definition for a given view.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="view">The view schema.</param>
/// <returns>The definition of a view.</returns>
public string GetViewText(string connectionString, ViewSchema view)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the primary key for a given table.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="table">The table schema.</param>
/// <returns>An the primary key for a specific table.</returns>
public PrimaryKeySchema GetTablePrimaryKey(string connectionString, TableSchema table)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets all of the table keys for a given table.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="table">The table schema.</param>
/// <returns>An array of keys for a specific table.</returns>
public TableKeySchema[] GetTableKeys(string connectionString, TableSchema table)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gats all of the indexes for a given table.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="table">The table schema.</param>

/// <returns>An array of indexes for a specific table.</returns>
public IndexSchema[] GetTableIndexes(string connectionString, TableSchema table)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the data from the given table.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="table">The table schema.</param>
/// <returns>A DataTable containing the data of the specific table.</returns>
public DataTable GetTableData(string connectionString, TableSchema table)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the data from a given view.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="view">The view schema.</param>
/// <returns>A DataTable containing the data of the specific view.</returns>
public DataTable GetViewData(string connectionString, ViewSchema view)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets all commands for the given database.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="database">The database schema.</param>
/// <returns>An array of commands.</returns>
public CommandSchema[] GetCommands(string connectionString, DatabaseSchema database)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the parameters for a given command.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="command">The command schema.</param>
/// <returns>An array of parameters.</returns>
public ParameterSchema[] GetCommandParameters(string connectionString, CommandSchema command)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets the definition for a given command.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="command">The command schema.</param>
/// <returns>The definition of a command.</returns>
public string GetCommandText(string connectionString, CommandSchema command)
{
 throw new NotImplementedException();
}

/// <summary>
/// Gets schema information about the results of a given command.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target

database.</param>
/// <param name="command">The command schema.</param>
/// <returns>An array of command results.</returns>
public CommandResultSchema[] GetCommandResultSchemas(string connectionString, CommandSchema
command)
{
 throw new NotImplementedException();
}

#endregion

#region Implementation of IDbConnectionStringEditor

public bool ShowEditor(string currentConnectionString)
{
 throw new NotImplementedException();
}

public string ConnectionString { get; private set; }
public bool EditorAvailable { get; private set; }

#endregion

Implementing the SchemaExplorer Interfaces

It is highly recommended that you implement all of the methods and properties that were created. It is recommended to implement the
ExtendedProperty methods but it isn't required. In the future, we may provide a new abstract base class implementation which implements
Extended Property support for you using a in memory database, but as of this time this is not on the official road map.

The first section to implement would be the Name and Description properties which display the name and description of the Schema Provider in
CodeSmith Generator.

/// <summary>
/// Gets the name of the schema provider (E.G. SqlSchemaProvider).
/// </summary>
public string Name { get { return "CustomSchemaProvider"; } }

/// <summary>
/// Gets the description for the schema provider (E.G. SQL Server Schema Provider)..
/// </summary>
public string Description { get { return "A Custom Schema Provider"; } }

Next, the GetDatabaseName method returns the name of a Database that is retrieved by the DataSource specified in the connection string (E.G.,
the Database name or a file name). From this point on, all of the methods are really important like the GetTables method

/// <summary>
/// Gets all of the tables available in the database.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="database">The database schema.</param>
/// <returns>An array of tables for a specific database.</returns>
public TableSchema[] GetTables(string connectionString, DatabaseSchema database)
{
 throw new NotImplementedException();
}

which returns all of the tables in this custom DataSource or the GetTableColumns which returns a list of columns for a specified table.

/// <summary>
/// Gets all columns for a given table.
/// </summary>
/// <param name="connectionString">The connection string used to connect to the target
database.</param>
/// <param name="table">The table schema.</param>
/// <returns>An array of view columns for a specific table.</returns>
public ColumnSchema[] GetTableColumns(string connectionString, TableSchema table)
{
 throw new NotImplementedException();
}

Download Custom Schema Provider Source

Click to download the source code above.here

Building a Custom Schema Provider

The first step is to set the output directory to the CodeSmith Generator Program Files Folder SchemaProviders Folder. To do this you will want to
go into the Project's Properties page by right clicking the Project in Solution Explorer and selecting Properties. Next navigate to the Build tab and
set the Configuration drop down list to All Configurations. Please note that this may require that you run Visual Studio as an Administrator to
build assemblies to a directory that requires elevated permissions via User Account Control (UAC). Also a build error may occur if CodeSmith
Generator is open while building the Custom Schema Provider.

http://technet.microsoft.com/en-us/library/cc709691(WS.10).aspx

You will want to set the Output path property value to the CodeSmith Generator Program Files Folder SchemaProviders Folder (C:\Program
Files\CodeSmith\<Version>\SchemaProviders). You can do this by clicking on the browse button or manually typing the value in. It is
recommended that you browser for this folder location. By setting this property it ensures that you will be building the Custom Schema Provider to
the correct directory so CodeSmith Generator automatically picks up the latest changes when you restart CodeSmith Generator.

Debugging a Custom Schema Provider

The first step to debugging a Custom Schema Provider is to make sure your project is set to compile in Debug mode as opposed to Release
mode. The next step is to set a Start Up application so any of your break points inside of your Custom Schema Provider get hit while running
CodeSmith Generator. To do this you will want to go into the Project's Properties page by right clicking the Project in Solution Explorer and
selecting Properties. Next navigate to the Debug tab and set the Configuration drop down list to All Configurations. Next under the Start Action
Section choose the Start External Program. You will want to browse for the application you want to test the Custom Schema Provider with. In
almost every case you will want to check out the Custom Schema Provider with CodeSmith Generator Explorer (C:\Program
Files\CodeSmith\<Version>\CodeSmith.exe).

Please configure the Build Directory before debugging to ensure your breakpoints are hit and your latest changes take effect.

http://msdn.microsoft.com/en-us/library/wx0123s5.aspx
http://msdn.microsoft.com/en-us/library/wx0123s5.aspx

Next, set a break point in your project and start debugging!

Deploying a Custom Schema Provider

To deploy a custom Schema Provider you will need to:

Make sure that the schema provider's assembly file name ends with "SchemaProvider.dll".
Place the schema provider's compiled assembly (bin\SchemaExplorer.CustomSchemaProvider.dll in our example) in the CodeSmith
Generator Program Files folder SchemaProviders Folder (ex. C:\Program Files\CodeSmith Generator\<Version>\SchemaProviders).
In order to use the schema provider from Visual Studio, you will need to add the schema provider to the GAC.
Restart CodeSmith Generator and/or Visual Studio.

Upgrading a Custom Schema Provider

To upgrade an existing SchemaProvider to a newer version of CodeSmith Generator you will want to ensure that you remove all CodeSmith
Generator project references and re-add them. Please note that you will want to ensure that they are pointing to the correct version of CodeSmith
Generator by right clicking on the project reference and select properties. There will be Version information that is presented in the Visual Studio
Properties Window. After this has been completed, just rebuild and redeploy to the CodeSmith Generator Program Files Folder SchemaProviders
Folder.

Using CodeSmith.CustomProperties

CodeSmith Generator ships with a sample project, CodeSmith.CustomProperties, that includes some useful property types for your templates:

FileNameEditor can be used to let the user select a filename as the value for a property
StringCollection can be used to let the user enter a collection of strings as the value for a property

You can find this project in your extracted samples folder (Documents\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\CustomPropertiesSample).

FileNameEditor

The FileNameEditor class lets you provide your users with a standard open file dialog box or save file dialog box from the CodeSmith Generator
property grid. To use this class, you must include a reference to the CodeSmith.CustomProperties assembly in your template. You'll make the
code simpler if you import the namespace as well:

<%@ Assembly Name="CodeSmith.CustomProperties" %>
<%@ Import Namespace="CodeSmith.CustomProperties" %>

After you include the appropriate assembly reference, you can define a property in a script block that uses the FileNameEditor:

<script runat="template">
private string _userFileName = @"c:\temp\test.txt";
[Editor(typeof(FileNameEditor), typeof(System.Drawing.Design.UITypeEditor)),
Category("Custom"), Description("User selected file.")]
public string UserFileName
{
 get {return _userFileName;}
 set {_userFileName= value;}
}
</script>

When the user executes the template, the specified property will display a builder button on the property sheet (highlighted in green):

Clicking the builder button will open the specified file dialog box:

You can customize the appearance of the file dialog box by applying the FileDialogAttribute to the property. For example, consider this property
definition:

private string _openFileName = @"c:\temp\test.txt";
[Editor(typeof(FileNameEditor), typeof(System.Drawing.Design.UITypeEditor)),
FileDialogAttribute(FileDialogType.Open, Title="Select Input File"),
Category("Custom"), Description("User selected file.")]
public string OpenFileName
{
 get {return _openFileName;}
 set {_openFileName= value;}
}

The File Dialog title has been updated in this example to "Select Input File" The resulting file dialog box looks like this:

You can specify these properties in the FileDialogAttribute:

Property Meaning Default

FileDialogType Save or Open FileDialogType.Save

Filter Filter string for file extensions All Files ()|*.*.

Title Dialog box title Select propertyname

DefaultExtension Default file extensions None

CheckFileExists True to only allow selecting existing files False

CheckPathExists True to only allow using existing paths False

To select a folder name instead of a file name, use the FolderNameEditor class from the .NET Framework instead:

<%@ Assembly Name="System.Design" %>
<script runat="template">
private string _outputDirectory = @"c:\temp";
[Editor(typeof(System.Windows.Forms.Design.FolderNameEditor),
typeof(System.Drawing.Design.UITypeEditor)),
Category("Custom"), Description("Output directory.")]
public string OutputDirectory
{
 get {return _outputDirectory;}
 set {_outputDirectory= value;}
}
</script>

StringCollection

Please take notice that this class has been marked as obsolete. Please use a generic collection instead.

The StringCollection provides a way for users to enter a list of strings. In your code, you can refer to these strings as members of an array. To use
this class, you must include a reference to the CodeSmith.CustomProperties assembly in your template:

<%@ Assembly Name="CodeSmith.CustomProperties" %>

After you include the appropriate assembly reference, you can define a property in a script block that uses the StringCollection

<%@ Property Name="List" Type="CodeSmith.CustomProperties.StringCollection" Category="Custom"
Description="This is the list." %>

When the user executes the template, the specified property will display a builder button on the property sheet:

Clicking the builder button will open an editor that allows the user to type strings on separate lines:

You can also edit the members of the collection directly in the property grid as a comma-separated list.

In your code, you can iterate through the collection as an array:

The list is:

<% for (int i = 0; i < List.Count; i++)\{ %>
<%= List[i] %>
<% \} %>

CodeSmith.BaseTemplates

The CodeSmith.BaseTemplates sample project contains two classes that inherit from CodeTemplate. These classes can be used to add
functionality to your templates by referencing them in the Inherits attribute of the directive:CodeTemplate

The class saves its output to a fileOutputFileCodeTemplate
The class includes utility functions for working with data stored in a SQL databaseSqlCodeTemplate

In addition, the project includes two utility classes that you can use via a reference to the CodeSmith.BaseTemplates :assembly

The class includes methods for working with stringsStringUtil
The class includes methods for working with SQL scriptsScriptUtility

You can find this project in your extracted samples folder (Documents\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\BaseTemplates).

OutputFileCodeTemplate

To base a template on the OutputFileCodeTemplate class, you inherit from this class in your template's directive:CodeTemplate

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Inherits="OutputFileCodeTemplate"
Description="Build custom access code." %>
<%@ Assembly Name="CodeSmith.BaseTemplates" %>

The OutputFileCodeTemplate class does two things. First, it adds a property named OutputFile to your template. This property requires you to
select a filename. Second, the template overrides the method to write the output of your template to the specified file afterOnPostRender
CodeSmith Generator has finished generating code.

If you want to customize the Save File dialog box used by the OutputFile property, you can override the OutputFile property in
your own template. For example, if you want to force the user to select a .cs file for output, you'd include this code in your
template:

<script runat="template">
// Override the OutputFile property and assign our specific settings to it.
[FileDialog(FileDialogType.Save, Title="Select Output File", Filter="C# Files (.cs)|.cs",
DefaultExtension=".cs")]
public override string OutputFile
{
 get {return base.OutputFile;}

 set {base.OutputFile = value;}

}
</script>

SqlCodeTemplate

To base a template on the SqlCodeTemplate class, you inherit from this class in your template's directive:CodeTemplate

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_CodeTemplate_Directive.html

<%@ CodeTemplate Language="C#" TargetLanguage="C#" Inherits="SqlCodeTemplate" Description="Build
data access layer." %>
<%@ Assembly Name="CodeSmith.BaseTemplates" %>

The SqlCodeTemplate class contains numerous utility methods designed to make it easier to work with SQL databases. These include:

GetCSharpVariableType - Returns the equivalent C# variable type for a database column.
GetMemberVariableDeclarationStatement - Returns a C# member variable declaration statement.
GetMemberVariableDefaultValue - Returns a default value based on a column's data type.
GetMemberVariableName - Returns the C# member variable name for a given identifier.
GetPropertyName - Returns the name of the public property for a given column.
GetReaderMethod - Returns the name of the typed reader method for a given column.
GetSqlDbType - Returns the SqlDbType based on a given column.
GetSqlParameterExtraParams - Generates any extra parameters that are needed for the ADO parameter statement.
GetSqlParameterStatement - Returns a T-SQL parameter statement based on the given column.
GetSqlParameterStatements - Generates an assignment statement that adds a parameter to a ADO object for the given column.
GetSqlReaderAssignmentStatement - Returns a typed C# reader.ReadXXX() statement.
GetValidateStatements - Generates a batch of C# validation statements based on the column.
IncludeEmptyCheck - Determines if a given column should use a check for an Empty value.
IncludeMaxLengthCheck - Determines if the given column's data type requires a maximum length to be defined.
IsUserDefinedType - Determine if the given column is using a UDT.

For a complete listing of all SqlCodeTempalate methods please refer to .the API documentation

StringUtil

To use the functions in the StringUtil class, you should set a reference to the CodeSmith.Engine assembly and import its namespace:

<%@ Assembly Name="CodeSmith.Engine" %>
<%@ Import Namespace="CodeSmith.Engine" %>

The StringUtil class includes these static methods:

IsPlural - returns True if a string is plural.
IsSingular - returns True if a string is singular
ToCamelCase - converts a set of words to a single camel case identifier
ToPlural - converts a word to its plural form
ToSingular - converts a word to its singular form
ToSpacedWords - converts a camel case identifier to separate words

For a complete listing of all StringUtil methods please refer to the API documentation.

Example

The following example will show how you can mapping overrides and StringUtil. StringUtil ToPlural and ToSinglular supports overriding the
converted word with a special csmap file. The default override file is called Plural-Overrides.csmap. It will be used by default. However, you can
use a different Map file if needed.

<%@ CodeTemplate Language="C#" TargetLanguage="Text"
 Debug="False" Description="Plural Overrides." %>

<%@ Map Name="PluralOverrides"
 Src="Plural.csmap" Reverse="False"
 Description="Convert system data types to c# alias" %>
<%@ Map Name="SingleOverrides"
 Src="Plural.csmap" Reverse="True"
 Description="Convert system data types to c# alias" %>

http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/caf8979f-1e2d-1132-0cad-f654f3c13b2e.htm
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/38d1e73d-3da4-3bd1-b38e-458ae966df67.htm

Using the built in csmap

Child: <%= StringUtil.ToPlural("Child") %>
Children: <%= StringUtil.ToSingular("Children") %>

Using the MapCollection

Knife: <%= StringUtil.ToPlural("nife", PluralOverrides) %>
Knives: <%= StringUtil.ToSingular("nives", SingleOverrides) %>

Using the csmap name

Knife: <%= StringUtil.ToPlural("nife", "Plural.csmap") %>
Knives: <%= StringUtil.ToSingular("nives", "Plural.csmap") %>

ScriptUtility

To use the functions in the ScriptUtil class, you should set a reference to the CodeSmith.Engine assembly and import its namespace:

<%@ Assembly Name="CodeSmith.Engine" %>
<%@ Import Namespace="CodeSmith.Engine" %>

The ScriptUtil class includes a single static method to execute a SQL script against a supplied connection. You'll find this method useful when you
want to .execute generated SQL scripts

Building a custom UITypeEditor

This document will walk you through the process of building a custom UITypeEditor as shown . This UITypeEditor will populate ahere
DropDownList with table names from a chosen database.

Building the DropDownListProperty

First you need to create a public class that will hold the data of the drop down list. In this example I named my class DropDownListProperty.

public class DropDownListProperty
{
}

Next we will need to add the properties and the constructors.

 public class DropDownListProperty
 {
 private List<string> _values = new List<string>();

 public DropDownListProperty()
 {
 SelectedItem = "None";
 }

 public DropDownListProperty(List<String> values)
 {
 if(values.Count > 0)
 SelectedItem = values[0];
 else
 SelectedItem = "None";

 Values = values;
 }

 public List<string> Values
 {
 get
 {
 if (_values == null)
 _values = new List<String>();

 return _values;
 }
 set
 {
 if(value != null)
 _values = value;
 }
 }

 [Browsable(false)]
 public string SelectedItem { get; set; }
 }

You'll notice that we have a public property called SelectedItem. This property will hold the initial value which will be the selected value when a
user selects a choice. By default we set this to "None" in the constructor. We also set an attribute on the property Browsable(false). This tells the
PropertyGrid not to display this property.

Updating the content that is displayed in the Property Sheet.

We now want to override the ToString() method to the DropDownListProperty so the dropdown displays the current selected value.

/// <summary>
/// The value that we return here will be shown in the property grid.
/// </summary>
/// <returns></returns>
public override string ToString()
{
 return SelectedItem;
}

Implementing the custom UITypeEditor

Now it is time to implement the class that controls how my class is displayed in the property grid. We will want to create a class that inherits from
UITypeEditor.

/// <summary>
/// Provides a user interface for selecting a state property.
/// </summary>
public class DropDownListPropertyEditor : UITypeEditor
{
}

Next we will add a private member variable named _service. We will need to declare this member variable because we will want to tie into an
event in a little bit. Now it is time to override the EditValue method.

/// <summary>
/// Displays a list of available values for the specified component than sets the value.
/// </summary>
/// <param name="context">An ITypeDescriptorContext that can be used to gain additional context
information.</param>
/// <param name="provider">A service provider object through which editing services may be
obtained.</param>
/// <param name="value">An instance of the value being edited.</param>
/// <returns>The new value of the object. If the value of the object hasn't changed, this method
should return the same object it was passed.</returns>
public override object EditValue(ITypeDescriptorContext context, IServiceProvider provider, object
value)
{
 if (provider != null)
 {
 // This service is in charge of popping our ListBox.
 _service =
((IWindowsFormsEditorService)provider.GetService(typeof(IWindowsFormsEditorService)));

 if (_service != null && value is DropDownListProperty)
 {
 var property = (DropDownListProperty) value;

 var list = new ListBox();
 list.Click += ListBox_Click;

 foreach (string item in property.Values)
 {
 list.Items.Add(item);
 }

 // Drop the list control.
 _service.DropDownControl(list);

 if (list.SelectedItem != null && list.SelectedIndices.Count == 1)
 {
 property.SelectedItem = list.SelectedItem.ToString();
 value = property;
 }
 }
 }

 return value;
}

It is important not to be overwhelmed by the code above. The object value that is passed in is the DropDownListProperty class that holds our
data. All we need to do is some safe type checking (value is DropDownListProperty) and then cast the value. The _service variable holds the
property grid control that we are interacting with.

We create a ListBox object as that will hold our list of data (Values property from the DropDownListProperty class). It also exposes a Click event
that will allow us to know when someone clicks on the drop down list. We will add an event handler ListBox_Click to the Click event so we can
close the drop down list. If we skipped this step then the list would always be shown.

The next few lines just adds all our data into the Listox and calls DropDownControl(Control). This shows the populated ListBox control.

Finally we will set the SelectedItem to the Item that the user selected.

It is time to add the method that we wired up to the Click event.

private void ListBox_Click(object sender, EventArgs e)
{
 if(_service != null)
 _service.CloseDropDown();
}

The last piece to this puzzle is to override the GetEditStyle method and return that we want to display a DropDown UITypeEditorEditStyle

/// <summary>
/// Gets the editing style of the <see cref="EditValue"/> method.
/// </summary>
/// <param name="context">An ITypeDescriptorContext that can be used to gain additional context
information.</param>
/// <returns>Returns the DropDown style, since this editor uses a drop down list.</returns>
public override UITypeEditorEditStyle GetEditStyle(ITypeDescriptorContext context)
{
 // We're using a drop down style UITypeEditor.
 return UITypeEditorEditStyle.DropDown;
}

Finally we will go back and add a Editor attribute to the DropDownListProperty class. This will tell the PropertyGrid that when this property type is
loaded to use the new UITypeEditor class we created.

[Editor(typeof(DropDownListPropertyEditor), typeof(System.Drawing.Design.UITypeEditor))]

Please for the complete source code for these two classes.click here

For more information on building custom UITypeEditors, please refer to the fol Michael Weinhardt and Chris Sells' article "
" on the MSDN Web site.Building Windows Forms Controls and Components with Rich Design-Time Features, Part 2

Setting up a DataDirectory for Generator Connection Strings

Using a DataDirectory for Generator

You can specify a DataDirectory for CodeSmith Generator to easily share and discover MS SQL Express databases. CodeSmith Generator ships
with a version of the Petshop database whose Datasource uses a DataDirectory.

The DataDirectory Path

By default, the DataDirectory folder for CodeSmith Generator is:

Windows 2000/XP: C:\Documents and Settings\<USER NAME>\My Documents\CodeSmith Generator\Samples\<VERSION>\Data

Windows Vista/Windows 7: C:\Users\<USER NAME>\Documents\CodeSmith Generator\Samples\<VERSION>\Data

Customizing the DataDirectory Path

You can customize the path that Generator uses to set up the DataDirectory in the AppDomain. The first step is to open the Generator Options
dialog. Once this dialog is open, select the Engine node on the left hand side of the options.

http://msdn.microsoft.com/msdnmag/issues/03/05/Design-TimeControls/default.aspx

Finally, look for the CodeSmithDataDirectory Property under the Paths category and select the folder picker. Changing this path to another
directory will cause Generator to use the new path the next time Generator starts up.

Frequently Asked Questions

How can I add comments to my templates?

Template comments can be added using the .<%- -%>tokens

How can I create a property that has a drop-down of values to choose from?

Use a script block to define an .enumerated property

How can I prevent ASP.NET tags from confusing my templates?

Properly .escape them using ASP.NET tags

How can I declare a constant in my template?

Constants must be declared inside tags.<script runat="template">

<script runat="template">
private const string MY_CONST = "example";
</script>

How can I debug my templates?

You can compile your templates in and set breakpoints in them.debug mode

How can I add a property that lets me select a folder?

Decorate the property with the attribute.FolderNameEditor

How can I use sub-templates?

CodeSmith Generator includes a full API to let you make use of .sub-templates

What assemblies and namespaces are loaded by default into a template?

Assemblies:

System
System.Core
System.Xml
System.Data
System.Drawing
System.Design
Microsoft.VisualBasic
System.Windows.Forms
CodeSmith.Engine
CodeSmith.Core

Namespaces:

System
System.Data
System.Diagnostics
System.ComponentModel
Microsoft.VisualBasic
CodeSmith.Engine

Is it possible to determine whether a column is an identity column using SchemaExplorer?

Yes, use the .CS_IsIdentity property

Is it possible to determine a column's default value using SchemaExplorer?

Yes, use the .CS_Default property

<%
 foreach(ColumnSchema cs in SourceTable.Columns)
 {
 if (cs.ExtendedProperties["CS_Default"] != null)
 {
 Response.WriteLine(cs.ExtendedProperties["CS_Default"].Value);
 }
 }
 %>

How can I enumerate the input and output parameters of a stored procedure using SchemaExplorer?

The contains both input and output parameter collections which can be used to read these parameters.CommandSchema object

What if my template contains non-ASCII characters?

You can use the of the CodeTemplate directive to set the encoding for the template.ResponseEncoding attribute

Tips and Tricks

When you need to generate multiple files as part of a single code-generation process, consider using one sub-template for each file. Call
the sub-templates from a master template and use the method to output each sub-template.RenderToFile
To generate multiple output files as part of an automated process, you can use the support from theCodeSmith Generator Project
console or MSBuild.
You can use to create property set XML files for use by the .Template Explorer CodeSmith Generator Console Application
You can drag and drop a template from window to any application that supports dropping text. When you drop theTemplate Explorer
template, CodeSmith Generator will display the template's property sheet. Fill in the metadata for the template, click the Generate button,
and the template's output will be rendered directly to the application where you dropped the template.
The new gives you a strongly-typed object model and statement completion for metadata stored in XML files.XmlPropertydirective
You can mix your own custom code with generated code by employing one of several different .active generation strategies
If you're generating SQL Scripts, CodeSmith Generator can for you immediately after generating them.execute the scripts
Use to preserve custom code while regenerating from templates as part of an automated build process.merge strategies
Use in the Template Editor to collapse all template code blocks. This is useful to quickly see all static template content.Ctrl+Shift+M
Use the template to generate standard create, retrieve, update, and delete stored procedures for a given tableStoredProcedures.cst
instantly.
You can use to output messages to the output window.Trace.WriteLine Debug

Internet Links

Home Page
Sales
Support
CodeSmith Community
Template Gallery

Reference

For references please see:

System Requirements
CodeSmith Generator Samples

System Requirements

CodeSmith Generator requires the .NET Framework (version 4.0), but it has no other hardware or software prerequisites. It should run fine on any
system that meets Microsoft's for installing the .NET Framework.minimum requirements

CodeSmith Generator Samples

When you install CodeSmith Generator, you also get a wide variety of useful samples. These samples are of two types. Sample templates,
located under the folder, can be loaded into CodeSmithDocuments\CodeSmith Generator\Samples\<VERSION>\Projects\Templates
Generator and used to generate code. Sample projects, located under the Documents\CodeSmith Generator\Samples\<VERSION>

 folder, show you how you can extend and customize CodeSmith Generator.\Projects\Samples

Generator Templates

CodeSmith Generator ships with a complete template set that helps you get up and running in no time flat. These template sets include
ActiveSnippet Templates, Database Templates, Example Templates, and various other templates. Why waste time withFramework Templates
repetitive tasks? Use ActiveSnippets and focus on other parts of your application.

ActiveSnippet Templates

ActiveSnippet's allow you to quickly reduce the amount of time it takes to get your job done. Any template can be used as an ActiveSnippet.
CodeSmith Generator ships with active snippets that will speed up the process of creating custom events and exceptions. Also you can quickly
generate an enumeration or properties from database meta data.

Database Templates

Whether you are looking for an easier ways to create a business object, document your database, script your table data, execute or create stored
procedures, generator is here to save you time and headaches.

The is a template that is a great template to use if your looking to quickly create an entity for your project. ManyBusiness Object template
developers also use this template as a base template when they need to create a new POCO (Plain Old CLR Object), Data Transfer Object or
Domain Class template.

The allows you to generate a SQL script that can be used to migrate your data betweenScript Table Data and Extended Properties template
database servers or import existing data into newly created databases.

The will create a nicely formatted html document of your entire database.DbDocumenter template

The will create (Insert, Update, Delete, Select) Stored Procedures based on a Database Table. Everything isStored Procedure template
configurable to fit your unique requirements.

The will create a wrapper around any SQL Stored Procedure or SQL Function. An easy to use API allows you toCommand Wrapper template
execute a stored procedure or function by calling Execute() which will return get back a strongly typed object or result. When used in conjunction
with the Stored Procedure templates, you can quickly get data from your database.

The creates typed DataSet and DataAdapter classes based on a database table of your choosing.Typed DataSet template

Example Templates

We provide a set of example templates that demonstrate how to use various in your own custom template.Generator features

The contains a template that will show you how to use Master Templates that will generate an ASP.NET default.aspx page.ASP.NET folder
(Watch the)Master Templates Video

https://www.codesmithtools.com/
https://www.codesmithtools.com/product/generator#pricing
https://www.codesmithtools.com/product/generator#support
http://community.codesmithtools.com/
http://community.codesmithtools.com/CodeSmith/m/templates/default.aspx
http://msdn.microsoft.com/en-us/library/8z6watww.aspx
http://www.codesmithtools.com/product/frameworks
http://www.codesmithtools.com/product/generator#features
http://www.youtube.com/v/7Qrjo-Gj0Xc

The contains templates that display the use of Master Templates, Partial templates and Linq To Objects in your templates.Basic Samples folder

The is a great example on how and when to use .Maps folder CodeSmith Generator Maps

The contains templates that will show you how to use Preserve Region and Insert Region Merge Strategies across different fileMerge folder
types and languages. (Watch the)Merge Strategies Video

The contains templates combine using a Master Templates and code behind to create a generic photo gallery from aPhoto Gallery folder
directory of image files.

The contains templates that show you how to generate from an Xml data source using the XmlProperty. (Watch the Xml folder XmlProperty
)Video

Other Templates

The Other templates folder contains various templates that ease the use working with AJAX, Custom Collections (ArrayList, HashTable, Queues,
SortedList and more) and .WIX (Windows Installer Xml toolset)

Generator Sample Projects

SchemaProvider source code - All source code can be found under the CSharp folder.schema provider

BaseTemplates - This project includes the source code for the classes.CodeSmith.BaseTemplates

ConsoleSamples - This folder contains samples for use with the .CodeSmith Console Application

VSIntegrationSample - This project contains a sample of using the VS.NET integration to simulate generics with the CodeSmith Generator
 integration.Project

CustomPropertiesSample - This project includes the source code for the classes.CodeSmith.CustomProperties

APISample - This project demonstrates the use of the .CodeSmith API

TypedDataSetSample - This project contains a test application for the typed DataSet templates.

Licensing and Distribution

For Licensing and Distribution information please see:

Copyrights and Trademarks
Software Licenses
CodeSmith Generator Editions
Product Activation / Deactivation

Copyrights and Trademarks

CodeSmith Generator is a trademark of CodeSmith Tools, LLC.

.NET, Visual Basic, and Visual C# are either registered trademarks or trademarks of in the United States and/or otherMicrosoft Corporation
countries.

Software Licenses

CODESMITH GENERATOR LICENSE AGREEMENT

IMPORTANT--READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or an
entity) and CodeSmith Tools, LLC ("CODESMITH") for the CodeSmith Generator template based code generator software product and any
included components or materials ("SOFTWARE PRODUCT"). BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE
PRODUCT, YOU AGREE TO BE BOUND BY THE TERMS OF THIS EULA. IF YOU DO NOT AGREE TO THE TERMS OF THIS EULA, YOU
ARE NOT AUTHORIZED TO INSTALL, COPY, OR OTHERWISE USE THE SOFTWARE PRODUCT.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by United States copyright laws and international copyright treaties, as well as other intellectual
property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE. This EULA grants you the following rights:
a. Per User License. The SOFTWARE PRODUCT permits a single user to use the SOFTWARE PRODUCT under the terms of the license. If the
SOFTWARE PRODUCT is installed on a single computer used by multiple users, a customer must purchase additional licenses for each user that
accesses the SOFTWARE PRODUCT. Further, if the SOFTWARE PRODUCT is installed or accessed through a network, the customer must

http://community.codesmithtools.com/CodeSmith_Community/b/jgonzalez/archive/2007/06/09/tips-amp-tricks-codesmith-maps.aspx
http://www.youtube.com/v/W1SpzAQebZk
http://www.youtube.com/v/9xxiy2k7SZY
http://www.youtube.com/v/9xxiy2k7SZY
http://wix.sourceforge.net/
http://www.microsoft.com

purchase additional licenses for each user that accesses the SOFTWARE PRODUCT through the network.
b. Use of Generated Output. You may distribute the output of your custom templates or the included templates in any way.

2. COPIES. You may make copies of the SOFTWARE PRODUCT provided that any such copy: (i) is created as an essential step in the utilization
of the SOFTWARE PRODUCT as licensed under this EULA, or (ii) is only used for archival purposes to back-up the Software. All trademark,
copyright and proprietary rights notices must be faithfully reproduced and included by you on such copies. You may not make any other copies of
the Software.

3. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.
a. Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or disassemble the
SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.
b. Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use on
more than one computer.
c. Redistribution. The SOFTWARE PRODUCT may not be redistributed in any way.
d. Custom Template Distribution. You may distribute your custom templates for the SOFTWARE PRODUCT in any way that you like. You may
also charge money for your custom templates.
e. No Rental. You may not rent, lease, lend or provide commercial hosting services to third parties with the SOFTWARE PRODUCT.
f. Termination. Without prejudice to any other rights, CODESMITH may terminate this EULA if you fail to comply with the terms and conditions of
this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

4. ADDITIONAL SOFTWARE/SERVICES.
a. Supplements. This EULA applies to additional software and updates of the SOFTWARE PRODUCT, including without limitation supplements,
service packages, hot fixes, or add-on components (collectively "Supplements") that CODESMITH may provide to you or make available to you
after the date you obtain your initial copy of the SOFTWARE PRODUCT, unless other terms are provided along with such Supplements.

5. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs, animations,
video, audio, music, text, SAMPLE CODE, and "applets" incorporated into the SOFTWARE PRODUCT) and any copies of the SOFTWARE
PRODUCT are owned by CODESMITH. The SOFTWARE PRODUCT is protected by copyright laws and international treaty provisions.
Therefore, you must treat the SOFTWARE PRODUCT like any other copyrighted material except that you may install the SOFTWARE
PRODUCT.

6. U.S. GOVERNMENT RESTRICTED RIGHTS. All SOFTWARE PRODUCT provided to the U.S. Government pursuant to solicitations issued on
or after December 1, 1995 is provided with the commercial license rights and restrictions described elsewhere herein. All SOFTWARE PRODUCT
provided to the U.S. Government pursuant to solicitations issued prior to December 1, 1995 is provided with "Restricted Rights" as provided for in
FAR, 48 CFR 52.227-14 (JUNE 1987) or DFAR,48 CFR 252.227-7013 (OCT 1988), as applicable.

7. EXPORT RESTRICTIONS. You acknowledge that the SOFTWARE PRODUCT is subject to U.S. export jurisdiction. You agree to comply with
all applicable international and national laws that apply to these products, including the U.S. Export Administration Regulations, as well as
end-user, end-use and destination restrictions issued by U.S. and other governments.

8. DISCLAIMER OF WARRANTY
To the maximum extent permitted by applicable law, CODESMITH provides the SOFTWARE PRODUCT and support services (if any) AS IS AND
WITH ALL FAULTS, and hereby disclaim all other warranties and conditions, whether express, implied, or statutory, including, but not limited to,
any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of reliability or availability, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the SOFTWARE
PRODUCT, and the provision of or failure to provide support or other services, information, software, and related content through the
SOFTWARE PRODUCT or otherwise arising out of the use of the SOFTWARE PRODUCT. ALSO, THERE IS NO WARRANTY OR CONDITION
OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION, OR NON-INFRINGEMENT WITH REGARD
TO THE SOFTWARE PRODUCT.

9. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL, AND CERTAIN OTHER DAMAGES.
TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL CODESMITH BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, PUNITIVE, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO, DAMAGES
FOR LOSS OF PROFITS OR CONFIDENTIAL OR OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY, FOR
LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE,
AND FOR ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR
INABILITY TO USE THE SOFTWARE PRODUCT, THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES,
INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE PRODUCT OR OTHERWISE ARISING OUT OF THE
USE OF THE SOFTWARE PRODUCT, OR OTHERWISE UNDER OR IN CONNECTION WITH ANY PROVISION OF THIS EULA, EVEN IN THE
EVENT OF THE FAULT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, BREACH OF CONTRACT, OR BREACH OF WARRANTY OF
CODESMITH, AND EVEN IF CODESMITH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

10. LIMITATION OF LIABILITY AND REMEDIES. NOTWITHSTANDING ANY DAMAGES THAT YOU MIGHT INCUR FOR ANY REASON
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ALL DAMAGES REFERENCED ABOVE AND ALL DIRECT OR GENERAL DAMAGES),
THE ENTIRE LIABILITY OF CODESMITH UNDER ANY PROVISION OF THIS EULA AND YOUR EXCLUSIVE REMEDY FOR ALL OF THE
FOREGOING SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR
U.S.$5.00. THE FOREGOING LIMITATIONS, EXCLUSIONS AND DISCLAIMERS SHALL APPLY TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, EVEN IF ANY REMEDY FAILS ITS ESSENTIAL PURPOSE.

11. APPLICABLE LAW. This EULA is governed by the laws of the State of Texas.

12. ENTIRE AGREEMENT. This EULA (including any addendum or amendment to this EULA which is included with the SOFTWARE PRODUCT)
is the entire agreement between you and CODESMITH relating to the SOFTWARE PRODUCT and support services (if any), and it supersedes all

prior or contemporaneous oral or written communications, proposals, and representations with respect to the SOFTWARE PRODUCT or any
other subject matter covered by this EULA. To the extent the terms of any CODESMITH policies or programs for support services conflict with the
terms of this EULA, the terms of this EULA shall control.

Premier Support

Why should I purchase Premier Support?

Premier Support is a support option that can be added to any of our CodeSmith Generator licenses. With it you get the following:

FREE upgrades to new major and minor releases of CodeSmith Generator.
Priority access to the CodeSmith development team for your support issues.
1 Business day email response time with priority over standard users.
Access to bug fixs and nightly builds without waiting for official releases.

Those without current Premier Support will only have access to the version they received at the time of purchase and will have to pay for any
major upgrades.

What is the cost of Premier Support?

The cost of for one full year and at the end of the year we send out a renewal notice to remind you of when your supportPremier Support is $99
expires so you can renew it before the end of the expiration date. Upon renewing the license, we add the year you paid for to the end of the
expiration date.

When can I purchase Premier Support?

Users have the following choices:

Purchase 1 year of Premier Support at the time of purchasing or upgrading a license.
Purchase 1 year of Premier Support at a later date. This will include an additional fee on top of the Premier Support cost.
Pay for support on a per incident basis.

You can purchase Premier Support by following the steps below.

Where can I purchase Premier Support?

New Orders

You can add Premier Support to your cart when adding CodeSmith Generator to your .cart

Existing Orders

You can purchase Premier Support by visiting the and entering your CodeSmith Generator license key.Premier Support Renewal Form

CodeSmith Generator Editions

CodeSmith Generator

CodeSmith Generator includes batch code generation, template caching, Visual Studio integration, the ability to use the CodeSmith API in custom
internal applications, merging support and much more. From small to large complex code generation scenarios CodeSmith Generator is the
perfect tool.

CodeSmith Generator is licensed per-user.

CodeSmith Generator SDK

The SDK Edition enables distribution of custom applications that use the Generator API (including SchemaExplorer). These applications can
make use of the full power of the Generator Engine in a programmatic fashion. You will be able to distribute the Generator assemblies with your
application and include a runtime SDK license either in your application folder or shared license folder.

The Generator SDK only allows for the distribution of Generator Assemblies internally. To use the Generator SDK outside of
your organization one must purchase a Commercial Generator SDK license.

CodeSmith Generator Server

http://www.codesmithtools.com/supportrenewal
http://www.codesmithtools.com/supportrenewal
http://www.codesmithtools.com/store
https://www.codesmithtools.com/supportrenewal

The Server Edition allows you to install CodeSmith Generator on a Build Server or Server. These applications can make use of the full power of
the Generator Engine in a programmatic fashion. The Server Ddition does not allow any access to CodeSmith Generator's User Interfaces like

.Template Explorer

CodeSmith Generator Features:

Feature Generator Generator SDK Generator Server

Simple Template Syntax l I I

Execute Custom Templates I I I

Auto SQL Script Execution I I I

Extensible Metadata I I I

SchemaExplorer Schema Discovery API I I I

Rich XML Support I I I

Sub Template Support I I I

Useful Sample Templates I

Console Client l I

Template Explorer Client l

Generator Template Editor l

Generator Map Support l I I

Visual Studio Integration l

Generator API l I I

Statement Completion l

Template Caching l I I

Template Debugging l I I

Merge Capabilities l I I

Generator Project Support l I I

MSBuild Support l I

ActiveSnippet Support I

Product Activation and Deactivation

Activation

CodeSmith Generator must be activated on each computer where you will use it. Activation issues a unique license code to the computer to
permanently unlock CodeSmith Generator's functionality. The activation technology that CodeSmith Generator uses is designed to be as painless
as possible, and to never lock you out from your legitimate use of the product. By default, you can activate CodeSmith Generator on three
different computers, but you can obtain additional activations simply by sending an e-mail to . When you install asupport@codesmithtools.com
new copy of CodeSmith Generator, you have a 30-day trial period to register the product, and then another 30-day grace period to complete the
product activation process.

When you first launch or the , CodeSmith Generator will display the Enter Registration Information dialog box:Template Explorer Template Editor

http://docs.codesmithtools.com/display/Generator/CodeSmith+Samples
http://docs.codesmithtools.com/display/Generator/Using+the+CodeSmith+Generator+Console+Application
http://docs.codesmithtools.com/display/Generator/The+Template+Explorer
http://docs.codesmithtools.com/display/Generator/Using+a+CodeSmith+Generator+Map
http://docs.codesmithtools.com/display/Generator/Using+the+CodeSmith+Generator+API
http://docs.codesmithtools.com/display/Generator/Using+a+CodeSmith+Project+from+MSBuild

Trial Activation

Please follow this guide if you are new to CodeSmith Generator and are trialing the software.

If you need a Trial Key, you can click on the Request Trial Key link on the left column of this dialog to request a Trial Key.

Please ensure that the Trial Key you enter in doesn't have any punctuation or trailing or leading spaces before pressing the Try
Button.

If you are using a Trial version of CodeSmith Generator you need to enter in your trial key and click the Try button. If you already own a license
you must click the register button and follow the steps defined below.

If you proceed in trial mode, CodeSmith Generator will display the Trial Mode dialog box:

From this dialog box, you may:

Click to return to the Enter Registration Information dialog box.Register
Click to learn more about purchasing CodeSmith Generator.Buy Now
Click to proceed with your CodeSmith Generator session.Try
Click to abort your CodeSmith Generator session.Cancel

Non-Trial Activation

Please follow these steps if you have already purchased CodeSmith Generator.

From the first screen, you will want to select the button.Register

Please enter your name, organization information, email address, and the serial number that you received at the time of purchase. Click the
 button to continue with the activation process. If activation is successful, this activation dialog will close.Register

Please contact if you have lost your serial number. Please provide an Order Number if possible.Sales

Please ensure that the Serial Key you enter in doesn't have any punctuation or trailing or leading spaces before pressing the
Register Button.

 When you enter registration information with a valid serial number, CodeSmith Generator will display the following Activation Required dialog box
if CodeSmith Generator cannot connect to the internet:

http://www.codesmithtools.com/contactus

At this point, you have four choices. You may:

Select if your computer is connected to the Internet. This will attempt to automatically contact the CodeSmithActivate Over the Internet
licensing servers to activate this installation without further intervention on your part. If your computer accesses the Internet through a
proxy server, click the Proxy Info link to enter your proxy server address, user name, and password.
Select to manually enter activation information. This option will allow you to activate by phone or Email.Activate by Entering a Code
Select the button to continue without activation. This will postpone activation to a later time.Activate Later
Select the button to cancel the activation process.Cancel

Click on one of the four options to proceed.

If you choose the option to activate by Email or phone, CodeSmith Generator will display your serial number and machine key. Please note that
the machine key is randomly generated by CodeSmith.

Click the to copy the information from this dialog to paste in an email. Please send an e-mail message with the aboveCopy to Clipboard
information to .support@codesmithtools.com

You can also click the to send us an Email pre-populated with the above information.Copy to Email

You will receive your unlock code by return e-mail. Paste the unlock code into this dialog box and click Continue to finish the activation process.

The serial number and machine key shown are for illustration only. Be sure to use the information from your own computer
when contacting .support

Please ensure that the Activation Code you enter in doesn't have any punctuation or trailing or leading spaces before pressing
the Activate Button.

Deactivation

To deactivate your license you need to open the About CodeSmith Generator dialog.

Next, click on the button to start the deactivation process.Deactivate

http://www.codesmithtools.com/contactus

1.
2.

To finish the deactivation process click on the button and select to the following dialog.Deactivate Yes

Please note that the following generated key is for your records ONLY. To activate CodeSmith Generator on a new machine
please use your original serial number.

Activation Support

We strive for excellence, in the event that the activation process fails, please contact as soon as possible with the following information.support

The Serial Key you are trying to activate (E.G., CSX0P-XXXXX...),

http://www.codesmithtools.com/contactus

2.
3.
4.

Operating System Information (E.G., Windows 7 SP1 64bit),
The exact version of CodeSmith Generator that you installed (E.G., X.X.X.XXXXX)
A copy of the Activation Error information (Shown Below)

Also, if you receive a Validation Notice dialog box while trying to activate CodeSmith Generator like the one below:

Please click on the lower left icon where the mouse icon is located. Doing so will copy any information available for the current dialog to the
clipboard. Please also attach this information that is in the clipboard along with the information outlined in steps one through three.

Next, please follow the step below.

Please continue pressing the buttons on each dialog that you see until you get to the following screen.Cancel

Once you see this dialog, please click on the ' ' link to copy this information to the clipboard. Finally attach thisCopy details to clipboard
information as done in the previous step and send us the email.

	Home
	CodeSmith Generator API
	Using the Generator SDK

	User's Guide
	Welcome to CodeSmith Generator
	Installing and Upgrading
	Installing CodeSmith Generator
	Changing CodeSmith Generator

	Uninstalling CodeSmith Generator
	Upgrading CodeSmith Generator Templates
	Upgrading existing Property Set Xml Settings

	Introduction and Tutorials
	Main Features
	What's New
	Tutorials
	Getting Started
	Launching Template Explorer
	Opening a Template
	Setting Properties
	Generating Code
	Inspecting the Template
	Where to Go From Here

	Writing Your First Template
	Spotting the Need
	Creating the Template
	Start with the Result
	Static Content in the Template
	Making the Content Dynamic
	Adding a Template Property
	Using Properties in the Template
	Compiling the Template and Generating Code

	Write a Template with Database Metadata
	HTTP Endpoints in SQL Server 2005
	The Desired SQL Statements
	Creating the Template in the Generator Template Editor
	Setting up Enumerated Properties
	Setting up a SQL Property
	Writing the Database Code
	Testing the Final Result

	Visual Studio Integration
	Using Template Explorer
	What is Template Explorer?
	The Template Explorer Toolbar
	Managing the Folder Tree
	Editing Templates
	Executing Templates
	Working with the Output Window

	Using the Template Editor
	Template Editor User Interface
	Template Editor Toolbar
	Template Documents
	Template Document
	Generated Document

	The Properties Window
	The Output Window
	The Error Window

	Template Editor Features
	Bracket Highlighting
	Documentation Comment Editing
	Find and Replace
	Incremental Search
	Keyboard Shortcuts
	Line Modification Markers
	Outlining
	Statement Completion
	Tab Groups and Split Windows
	Template Navigation
	Themes and Syntax Highlighting

	Building, Running, and Compiling Templates
	Customizing CodeSmith Generator

	Using Schema Explorer
	Managing Extended Properties

	Using the Map Editor
	Developing using a Generator Map

	Using CodeSmith Generator Projects
	Manage Outputs
	Project Options

	Using a Generator Project inside Visual Studio
	Using Generator Project from Windows Explorer
	Using a Generator Project from MSBuild
	Using a Generator Project from Command-Line
	Anatomy of a Project File

	Using the Console Application
	Incorporating Generator into Your Build Process
	Basic Console Application Usage
	Handling Input
	Specifying Properties on the Command Line

	Handling Output
	Default Output Files in Templates

	Using ActiveSnippets
	ActiveSnippet Configuration

	Basic Template Syntax
	The CodeTemplate Directive
	Including Comments
	Declaring and Using Properties
	Property Directive
	Declaring an Enumerated Property
	Property Validation

	Escaping ASP.NET Tags
	The CodeSmith Generator Objects
	The CodeTemplate Object
	Overriding the GetFileName Method
	Overriding the ParseDefaultValue Method
	Overriding the Render Method
	Template Events
	The OnInit Event
	The OnPreRender Event
	The OnPostRender Event
	The OnPropertyChanged Events

	The Response Property

	The Progress Object
	The CodeTemplateInfo Object

	Advanced Template Syntax
	Understanding CodeSmith Generator's Code Behind Model
	Referencing Assemblies
	Importing Namespaces
	Including External Files
	Sharing Common Code
	Debugging Templates
	Outputting Trace and Debug Information
	Viewing the Compiled Template Source Code

	Using Master Templates
	Registering Sub-Templates
	Merging Properties into the Parent Template
	Copying Properties from the Parent Template
	Setting Properties in a Sub-Template
	Rendering a Sub-Template
	A Sub-Template Example

	Writing to Multiple Outputs

	Driving Templates with Metadata
	Using .NET Types
	Using SchemaExplorer
	The SchemaExplorer Object Model
	Connection Strings
	Choosing Objects
	Sorting Collections
	Using Extended Properties

	XML Support
	XML Property Examples

	Custom Metadata Sources
	Adding Designer Support
	Adding Property Set Support

	Generating from Source Code

	Advanced Topics
	Auto Executing Generated SQL Scripts
	Merge Strategies
	InsertClass Merge Strategy
	InsertRegion Merge Strategy
	PreserveRegions Merge Strategy
	Defining Your Own Merge Strategy

	Active vs. Passive Generation
	Using Inheritance to Enable Active Generation
	Using Merge Strategies to Enable Active Generation
	Using Partial Classes to Enable Active Generation

	Template Caching
	Version Control Support
	Building a Custom Schema Provider for SchemaExplorer
	Creating a Custom Schema Provider
	Building a Custom Schema Provider
	Debugging a Custom Schema Provider
	Deploying a Custom Schema Provider
	Upgrading a Custom Schema Provider

	Using CodeSmith.CustomProperties
	FileNameEditor
	StringCollection

	CodeSmith.BaseTemplates
	OutputFileCodeTemplate
	SqlCodeTemplate
	StringUtil
	ScriptUtility

	Building a custom UITypeEditor
	Setting up a DataDirectory for Generator Connection Strings

	Frequently Asked Questions
	Tips and Tricks
	Internet Links
	Reference
	System Requirements
	CodeSmith Generator Samples

	Licensing and Distribution
	Copyrights and Trademarks
	Software Licenses
	Premier Support
	CodeSmith Generator Editions
	Product Activation and Deactivation

