L HOME e e 4
1.1 CodeSmith GeNerator APl . . . e 4
1.1. 2 Using the Generator SDK e 5
L2 USEI'S GUIE .. oottt ettt e e e e e e e 6
1.2.1 Welcome to CodeSmith GENEIAtOrttt et 6
1.2.2Installing and Upgradingottt e 7
1.2.2.1 Installing CodeSmith GENEIAtOrttt e e e e e 7
1.2.2.1.1 Changing CodeSmith GeNneratort e e 11
1.2.2.2 Uninstalling CodeSmith Generatort e 13
1.2.2.3 Upgrading CodeSmith Generator TEMPIAtESot e e 14
1.2.2.4 Upgrading existing Property Set Xml Settingsot 17
1.2.3 Introduction and TULOMIAISt e e 17
1.2.3.1 MaiN FEAUIES . . . oottt et e e 17
1.2.3. 2 What's NBW . .ottt e et e e 18
1.2.3. 3 TUONAIS . . e 22
1.2.3.3.1 Getting Started e 22
1.2.3.3.2 Writing Your First Templateo e 28
1.2.3.3.3 Write a Template with Database Metadata e 33
1.2.4 Visual Studio INtegration 45
1.2.5 Using Template EXPIOrero e 49
1.2.5.1 What is Template EXPIOrer? e e 49
1.2.5.2 The Template EXplorer TOOIDAr e e e e e 49
1.2.5.3 Managing the Folder Tree i e e e e e 49
1.2.5.4 Editing Templateso 51
1.2.5.5 EXECULING TeMPIatES . . . ittt e e e e 51
1.2.5.6 Working with the OUtpUt WINAOWo e e e e e e e e e e 53
1.2.6 Using the Template Editor e e e 53
1.2.6.1 Template Editor User INterfaCe e 54
1.2.6.1.1 Template EQItor TOOIDAro e 55
1.2.6.1.2 Template DOCUMENTSttt ettt e et e e e e e e e e e e e e e e e e e e 56
1.2.6.1.3 The Properties WINAOWt e e e e e e e e e e e 57
1.2.6.1.4 The OUIPUL WINAOWot e e e e e e e e e e e e e e e 59
1.2.6.1.5The Error WINAOW . .. oo e e e e e e e e e e e e 59
1.2.6.2 Template EAItOr FEAtUrESo e e e e e 60
1.2.6.2.1 Bracket Highlighting o 60
1.2.6.2.2 Documentation Comment EditiNg 61
1.2.6.2.3 Find @nd Replace o 61
1.2.6.2.4 Incremental SearCh 63
1.2.6.2.5 Keyboard ShOMCULSottt e e e e e e 63
1.2.6.2.6 Line Modification Markers 66
1.2.6.2.7 OUINING . . oot 66
1.2.6.2.8 Statement Completion 68
1.2.6.2.9 Tab Groups and Split WINAOWS e 70
1.2.6.2.10 Template Navigation e 72
1.2.6.2.11 Themes and Syntax Highlighting e 73
1.2.6.3 Building, Running, and Compiling Templates 74
1.2.6.4 Customizing CodeSmith Generatort e 74
1.2.7 UsiNg SChema EXPIOrer . ..t e e e e e e 75
1.2.7.1 Managing Extended Propertiest 78
1.2.8 Using the Map EditOr 80
1.2.8.1 Developing using @ GENErator Mapottt e e e e e e e e 81
1.2.9 Using CodeSmith Generator PrOJECISttt e et e e e e e e e 85
1.2.9.1 MANAGE OULPULS . . o ..ot ettt et e e et e e e e e 86
1.2.9.1.1 ProjeCt OPtiONS . . oottt ittt e e e e e e e 89
1.2.9.2 Using a Generator Project inside Visual Studio 92
1.2.9.3 Using Generator Project from WINdows EXPlOrer e 97
1.2.9.4 Using a Generator Project from MSBUIId e e 98
1.2.9.5 Using a Generator Project from Command-Line 100
1.2.9.6 Anatomy Of @ Project File 101
1.2.10 Using the Console ApPlICatioN e 103
1.2.10.1 Incorporating Generator into Your Build ProCess 103
1.2.10.2 Basic Console Application USAgettt e e 103
1.2.20.3 Handling INPUL . . . oot e e e 104
1.2.10.3.1 Specifying Properties onthe Command Line i e e e 104
1.2.10.4 Handling OULPUL oot e et e e e e e e e e e e e e e e 104
1.2.10.4.1 Default Output Files in TemMPIatest e e e 104
1.2.11 USING ACHVE S NIPPELS . . . oottt e e e e 104
1.2.11.1 ActiveSnippet Configuration 108
1.2.12 BasiC TEMPlate SYNTAXottt e e e e e e e e e e 111
1.2.12.1 The CodeTemplate DIreClIVE e e e e e e e 111
1.2.12.2 InCluding COMMENES . . o . ottt ettt e e et e e e e e e e e e e e 113
1.2.12.3 Declaring and UsSiNg Propertiesttt e e e e e e e e e e 113
1.2.12.3.1 Property DireCtVe . ..ottt e e 114
1.2.12.3.2 Declaring an Enumerated Propertyt 115

1.2.12.3.3 Property Validation 116

1.2.12.4 ESCapPING ASP.NET TagS -« - .t oot ettt it et e e e e e e e e e e e e e 117

1.2.12.5 The CodeSmith Generator ObJeCtS e 117
1.2.12.5.1 The CodeTemplate ObJEC e e e 117
1.2.12.5.2 The Progress ObjJeCt 121
1.2.12.5.3 The CodeTemplatelnfo ObJeCt e e 122

1.2.13 Advanced Template SYNtAXttt et e et e e 123

1.2.13.1 Understanding CodeSmith Generator's Code Behind Model 123

1.2.13.2 Referencing ASSembliEs 125

1.2.13.3 IMporting NAMESPACES ot ottt e ettt e e e e 126

1.2.13.4 Including EXternal Fileso 126

1.2.13.5 Sharing Common COUEt e e 126

1.2.13.6 Debugging Templates 126
1.2.13.6.1 Outputting Trace and Debug Information 129
1.2.13.6.2 Viewing the Compiled Template Source CoOdettt e 130

1.2.13.7 Using Master TemMPIates ot e e 130
1.2.13.7.1 Registering SUb-TempPIates i 130
1.2.13.7.2 Merging Properties into the Parent Template e 131
1.2.13.7.3 Copying Properties from the Parent Template e 131
1.2.13.7.4 Setting Properties in a Sub-Template 131
1.2.13.7.5 Rendering a Sub-Template 132
1.2.13.7.6 A Sub-Template EXample 132

1.2.13.8 Writing to Multiple QUIPULSo e e e 134

1.2.14 Driving Templates with Metadata e 135

1.2.04. 0 USING NET Ty DS . .ottt ittt e et e e e e e e e e e 135

1.2.14.2 USiNg SChemMaEXpIOrEr . ..ot e 135
1.2.14.2.1 The SchemaExplorer Object Model e 137
1.2.14.2.2 CONNECHION SHINGS . . . oottt ettt e e et e e e e e e e 138
1.2.14.2.3 Choosing ODJeCtSo 138
1.2.14.2.4 Sorting CollECHONS . . . o oot e e e e 142
1.2.14.2.5 Using Extended Propertiest 142

1.2.14.3 XML SUP PO o oottt e e e e 143
1.2.14.3.1 XML Property EXampleso 145

1.2.14.4 Custom Metadata SOUICESottt et e e e et e e 147
1.2.14.4.1 ADding DeSIgNEr SUPPOIt ottt et e e et e e e e e e e e e 147
1.2.14.4.2 Adding Property Set SUPPOItottt e e e e e e 149

1.2.14.5 Generating from SoUrCe COUE\ttt e e e 149

1.2.15 AAVANCE TOPICS . . . o ot ettt e et e e e e e e e e e e e e e e e 150

1.2.15.1 Auto Executing Generated SQL SCHPISttt 150

1.2.15.2 MEIQE SITategIBS . . . oo ittt ittt e e e e e e e 151
1.2.15.2.1 InsertClass Merge Strategyottt it ettt e e e e e e 151
1.2.15.2.2 InSertRegioN MEerge Strategy oot v ettt e et et e e e et et 153
1.2.15.2.3 PreserveRegions Merge Strategyottt e e e e 154
1.2.15.2.4 Defining Your Own Merge STrategyo v vttt e e e e et e e e e 156

1.2.15.3 Active vS. Passive GENEerationttt 156
1.2.15.3.1 Using Inheritance to Enable Active Generation ittt e 157
1.2.15.3.2 Using Merge Strategies to Enable Active Generationttt 158
1.2.15.3.3 Using Partial Classes to Enable Active Generationttt 159

1.2.15.4 Template Cachingt e e e e 159

1.2.15.5 Version Control SUPPOIT oottt e e e e e e e e e 160

1.2.15.6 Building a Custom Schema Provider for SchemaEXxplorer e 160
1.2.15.6.1 Creating a Custom Schema Provider e 161
1.2.15.6.2 Building a Custom Schema Provider 167
1.2.15.6.3 Debugging a Custom Schema Providert 168
1.2.15.6.4 Deploying a Custom Schema Provider 169
1.2.15.6.5 Upgrading a Custom Schema Provider e 169

1.2.15.7 Using CodeSmith.CUStOMPIOPEIIESottt e e e e e e e e e e e 169
1.2.15.7. 1 FleNameEditor 170
1.2.15.7.2 StingCOlIECHION . . . o .o e e 172

1.2.15.8 CodeSmith.BaseTemplates e 174
1.2.15.8.1 OutputFileCodeTemplate e e 174
1.2.15.8.2 SQICOAETEMPIALE . . .ottt e 174
1.2.05.8.3 StiNQUIIL . ..o 175
1.2.15.8.4 SCriptULIIItY . .. oot e 176

1.2.15.9 Building a custom UITYpeEditOrt e e e e 176

1.2.15.10 Setting up a DataDirectory for Generator Connection Stringsttt 179

1.2.16 Frequently Asked QUESHIONSottt ittt e e e e e e 180
1.2 27 TIPS @nd THCKS o o ottt et e e e e e e e 181
12,08 INternet LINKS . ..ot 181
12,09 R EIBNCE . .o 182
1.2.19.1 System ReqUIFEMENESottt et e et e e e e e e 182
1.2.19.2 CodeSmith Generator SAMPIESottt e 182
1.2.20 Licensing and Distribution 183
1.2.20.1 Copyrights and Trademarksttt e e 183
1.2.20.2 SOftwaAre LICENSES oottt et e 183

1.2.20.3 Premier SUPPOIT . . . oottt et et et e e e e e e e e 185

1.2.20.4 CodeSmith Generator Editions

1.2.20.5 Product Activation and Deactivation

Home

CodeSmith Generator Documentation

Welcome to the CodeSmith Generator Documentation portal. All of our documentation is provided in a friendly wiki format. Please use the
navigation tree on the left to locate the subject that you are interested in.

If you can not find what you are looking for, please feel free to contact us via our Contact Us page.

User's Guide
The CodeSmith Generator User's Guide is for anyone who uses CodeSmith Generator. Are you new to CodeSmith Generator? You can start by
exploring the Introductions and Tutorials sections which will show you how to create custom templates and how to use CodeSmith Generator. The

User's Guide is also broken down into different categories with helpful pictures and video tutorials. These rich resources will help you get
acquainted with any area of CodeSmith Generator like Template Syntax, Visual Studio Integration, CodeSmith Explorer and much more.

Upgrade Guide

The CodeSmith Generator Upgrade Guide is for people who are upgrading their copy of CodeSmith Generator. Just start by reading the latest
Release Notes and the steps needed to upgrade your existing templates. Then, download Generator and follow the main Upgrade Guide.

Developer Resources

These resources are for software developers who want to create their own templates or extend CodeSmith Generator by using the CodeSmith
Generator APIs. All of the CodeSmith Generator API Documentation can be found here.

Additional Resources

Official Site
Downloads
Online Store
Forums
Change Log

PDF Format

CodeSmith Generator API

Welcome to the CodeSmith Generator developer's API documentation. The CodeSmith Generator API documentation allows you to discover and
consume the various CodeSmith Generator features programmatically. The Generator APl documentation is available both in online and offline

formats.

CodeSmith Generator exposes the entire operation of the CodeSmith Generator engine through an API. Through this API, you can compile
templates, retrieve any errors, create instances of templates, get the generated source code, fill in template metadata, and ultimately render a
template's output to a TextWriter, file, or string. This API allows you to perform many CodeSmith Generator operations from your own code in any
.NET language, and lets you programmatically execute CodeSmith Generator templates from within your own code.

Remember, CodeSmith Generator is licensed on a per-developer basis. If your application depends on programmatically
executing CodeSmith Generator templates, each user must have a license to use CodeSmith Generator.

Online Version

Please click here to view the CodeSmith Generator APl documentation online, all you need is a modern web browser.

http://www.codesmithtools.com/contactus
http://docs.codesmithtools.com/display/Generator/Using+CodeSmith+Explorer
http://docs.codesmithtools.com/display/Generator/Upgrading+CodeSmith+Generator
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://www.codesmithtools.com/downloads
http://docs.codesmithtools.com/display/Generator/Upgrading+CodeSmith+Generator
http://www.codesmithtools.com/product/generator
http://www.codesmithtools.com/downloads
http://www.codesmithtools.com/store
http://community.codesmithtools.com/forums/
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://www.codesmithtools.com/help/

Offline Version

If you need to view the Generator APl Documentation offline or on the go, you can download the offline version by clicking here. You will then be
prompted to save the Generator APl documentation to your computer.

After downloading the Generator API Documentation, you will need to unblock the downloaded GeneratorAPl.chm file by
following these steps.

Using the Generator SDK

After reading this document you will know how-to download, install and use the CodeSmith Generator SDK in your
applications. This document will also demonstrate the most common uses of the CodeSmith Generator API:

Compiling a template

Retrieving compile errors
Creating a new template instance
Filling in template metadata
Rendering a template

Download

After logging into your account, visit the following the downloads section to download the latest version of CodeSmith Generator.

It is recommended that you download the Zipped Version of CodeSmith Genreator as it includes all of the assemblies that you
will need to reference in your SDK application.

Installing the license

A license key file will be emailed to you after purchase the SDK license from the online store. This license file needs to meet one of the following
criteria:

®* Embed the license file into your application as an embedded resource in the assembly that calls the CodeSmith.Engine.
® Place the license file into the same directory as your application.

Creating a new project

In order to use CodeSmith Generator SDK you will need to create a new .Net 4.0 or newer project. In the example below, we will be creating a
new console application.

.ﬂ. A C# and VB.Net sample SDK project exists in your extracted samples under the following directory (Documents\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\APISample). You may need to do some minor changes like changing the
ConnectionString.

lﬂl A project using an SDK license must be Strong-Named.

Adding project references

Next, you are required to reference the following assemblies:

® CodeSmith.Core.dll
® CodeSmith.Engine.dll

http://www.codesmithtools.com/help/resources/GeneratorAPI.chm
http://www.codesmithtools.com/help/resources/GeneratorAPI.chm
http://www.jeff.wilcox.name/2008/11/unblock-chms/
http://www.codesmithtools.com/
https://www.codesmithtools.com/downloads
https://www.codesmithtools.com/store
http://msdn.microsoft.com/en-us/library/wd40t7ad.aspx

lﬂl These assemblies will be located in the zipped version of Generator that you downloaded in the previous step.

In the example below we will also need to reference the following assemblies:

® CodeSmith.BaseTemplates.dll
® SchemaExplorer.dll
® SchemaExplorer.SqlSchemaProvider.dll

Writing the Code

Now it's time to dive in and write some generation code! We will add the following code to our console application:

public static void Main(string[] args)
{
CodeTenpl at eConpi | er conpiler = new CodeTenpl at eConpi l er("..\\..\\StoredProcedures.cst");
conpi |l er. Conpil e();
if (conpiler.Errors. Count == 0)
{
CodeTenpl ate tenplate = conpil er. Createl nstance();
Dat abaseScherma dat abase = new Dat abaseSchema(new Sql SchemaProvi der (),
@ Ser ver =. ; Dat abase=Pet Shop; I nt egrat ed Security=True;");
Tabl eSchema tabl e = dat abase. Tabl es["I nventory"];
tenpl at e. Set Property("SourceTabl e", table);
tenpl ate. Set Property("Incl udeDrop", false);
tenpl ate. Set Property("InsertPrefix", "lnsert");
t enpl at e. Render (Consol e. Qut) ;

}
el se
{
for (int i =0; i < conpiler.Errors.Count; i++)
{
Consol e. Error. WiteLine(conpiler.Errors[i].ToString());
}
}

Consol e. WiteLine("\r\nPress any key to continue.");
Consol e. ReadKey() ;

The above code will compile and run but requires the Stored Procedures template that can be found in the APISample project that was mentioned
above. If you have any SDK API questions feel free to contact support.

In addition to the methods shown in this sample, you may also find the CodeTemplate.RenderToFile and
CodeTemplate.RenderToString methods useful; they let you direct the output of your templates directly to a file or to a string
variable.

User's Guide

The CodeSmith Generator User's Guide is for anyone who uses CodeSmith Generator. New to CodeSmith Generator? Start by exploring the
Introductions and Tutorials sections which will show you how to create custom templates and how to use CodeSmith Generator. The User's Guide
is also broken down into different categories with helpful pictures and video tutorials. These rich resources will help you get acquainted with any
area of CodeSmith Generator like Template Syntax,Visual Studio Integration, CodeSmith Explorer and much more.

Welcome to CodeSmith Generator

http://www.codesmithtools.com/contactus
http://docs.codesmithtools.com/display/Generator/Using+CodeSmith+Explorer

CodeSmith Generator is a template-based code generator that can produce code for any text-based language. Whether your target language is
C#, VB.NET, JScript.NET, T-SQL, Java or even FORTRAN, CodeSmith Generator can help you produce higher-quality, more consistent code in
less time than writing code by hand.

Generator's familiar ASP.NET-based template syntax means that you can be writing your first templates within minutes of installing the package.
The advanced Generator Template Editor helps you create and test new templates in a rapid development setting. You can also join in
CodeSmith Generator's active online community to download hundreds of ready-made templates for such common development tasks as building
strongly-type collection classes or creating data access layers.

CodeSmith Generator Projects and ActiveSnippets are integrated within Microsoft Visual Studio to make code generation a breeze.

CodeSmith Generator also includes a console version and a MSBuild task that you can easily integrate into your automated build process, flexible
strategies for merging generated code with custom code, the SchemaExplorer API for integration with relational data sources, and the ability to
hook up your own custom metadata sources.

If you're new to CodeSmith Generator, Getting Started with CodeSmith Generator will show you how to begin generating code for your own
projects immediately. If you're an experienced CodeSmith Generator user, What's New will point you at the major new features in this release.

Installing and Upgrading

Installing CodeSmith Generator

The following pages will go over how to install, change, and uninstall CodeSmith Generator.
® Changing CodeSmith Generator

® Installing CodeSmith Generator
® Uninstalling CodeSmith Generator

) Please see this guide for more information on activating CodeSmith Generator.

Upgrading CodeSmith Generator

This section will help guide you through upgrading CodeSmith Generator and your existing templates to the latest version of CodeSmith
Generator.

To upgrade to the latest version of CodeSmith Generator please follow the steps below.
1. Upgrade your existing CodeSmith Generator key using the following form. If you have any questions, please contact sales.
2. You will receive an email containing your new key and a download link in an email.
3. Download and run the Installer for CodeSmith Generator. This will handle the upgrading of any previous installs of CodeSmith

Generator.
4. Launch Template Explorer and activate using the key you received in your email (step 2).

Additional Upgrade Guides

® Upgrading CodeSmith Generator Templates

® Upgrading existing Property Set Xml Settings
Installing CodeSmith Generator
Installing

The following section will go over how to download CodeSmith Generator, customizing the installation, and changing the samples directory.

Download

http://msdn.microsoft.com/en-us/vcsharp/default.aspx
http://msdn.microsoft.com/en-us/vbasic/default.aspx
http://msdn.microsoft.com/en-us/library/ms974588.aspx
http://community.codesmithtools.com/
http://community.codesmithtools.com/File_Share/f/7.aspx
http://www.codesmithtools.com/upgrade
http://www.codesmithtools.com/contactus

In order to download the latest CodeSmith Generator installer, just visit our download page. If you need a previous version, just send us an email
and we will be happy to provide you with the download.

Once you have the CodeSmith Generator installer downloaded, double click on the icon to launch it. Depending on your settings, you may be
presented with this window:

Do you want to run this file?

] MName: ..ers\Administrator\Downloads\Generator-60.msi
=
J%T Publisher: CodeSmith Tools, LLC
Type: Windows Installer Package

From: ChUserstadministrator\Downloads\Generator-a...

Run || Cancel |

Aways ask before opening this file

potentially ham your computer. Onby run saftware from publishers

l@ While files from the Intemet can be useful, this file type can
A you trust. What's the risk ?

. Before clicking run, please make sure that Visual Studio and previous versions of CodeSmith Generator are not running. If
these programs are closed, click run to continue with the installation.

Customizing Your Setup

ﬁ! CodeSmith Generator 6.0.3.14130 Setup N
Custom Setup -g
Select the way you want features to be installed. _¢

Click the icons in the tree below to change the way features will be installed.

=) &~ | CodeSmith Generator Installs Visual Studio 2010

= - | [ETE i bR ae | integration features.

MSBuild Task

This feature requires 6KE on your
hard drive.

Browse...

Reset][Disk Usage] [Back][Mext] [Cancel

http://www.codesmithtools.com/downloads

This window will allow you to customize which components of CodeSmith Generator you want to install. You can do this by clicking on the icon to
the left of the component you want to change. You will be presented with the following options.

1. Will be installed on local hard drive.
® This means the feature will be installed in your current default hard drive.
2. Entire feature will be installed on local hard drive.

® This means that the parent and child features will be selected as "Will be installed on local hard drive".
3. Feature will be installed when required.

® The feature will be installed when you perform an action that requires it.
4. Entire feature will be unavailable.
® The selected feature won't be installed at all.

ﬁ! CodeSmith Generator 6.0.3.14179 Setup = =

Custom Setup m
Select the way you want features to be installed.

Click the icons in the tree below to change the way features will be installed.

[l & ~ | CodeSmith Generator Installs Visual Studio 2010

Visual Studio 2010 Integ integration features.

= Will be installed on local hard drive h
......... =18 Entire feature will be installed on local hard drive

oLr
=0 Feature will be installed when required
» Entire feature will be unavailable
P —— —r]
Browse...
Reset][Disk Usage] [Back][Mext “ Cancel

A

From the same window, you can also change the destination folder of CodeSmith Generator by clicking browse and selecting the file path you
wish CodeSmith Generator to be placed. If you don't want to change any of these settings, just click next to continue with the default settings.

4l CodeSmith Generator 6.0.3.14183 e |
Change destination folder Q
Browse to the destination folder

oy
Look in: [codesmith -

[Jaddins (7] Help
(Abin 3 Samples

[(dcollections [_schemaProviders
[CAcommand [[dschemas
[(Acriteria

[(JEntities

Folder name:
IC:‘!,F‘mgram Files (x86)\CodeSmith},

Changing The Samples Directory

After clicking next on the Custom Setup window, you will be presented with the below window.

4 CodeSmith Generator 6.0.3.14130 Setup e)
Custom Setup m
Select the way you want features to be installed.

Click the Browse button to select the location the sample templates will be extracted to.
IMPORTAMT: Please make sure that the selected path has write permissions for the cu...

Location: C:\sers\Administrator \Documents\CodeSmith
Generator),

Back | MNext || cancel

LS 2

By clicking browse in this window, you can change the file path you want your samples directory to be located in.

ﬁ' CodeSmith Generator £.0.3.14180 Setup

Change destination folder
Browse to the destination folder

Look in: (L3 CodeSmith Generator

CIMaps
DSampIes
I:ITempIates

Folder name:

/1, Please make sure that you have read/write permissions as the currently logged in user to the folder you're trying to set your
samples directory to.

Next: Uninstalling CodeSmith Generator

Changing CodeSmith Generator

Changing
In order to change currently installed features and components of CodeSmith Generator, you will either need to:
® Go to your control panel, select Uninstall a program, find CodeSmith Generator and click 'Change' at the top bar, or right click CodeSmith
Generator and click '‘Change'.
® Find your original CodeSmith Generator set up file and run it. If you deleted the set up file, you can download it here. If you need a
previous version, please contact us via email.

Both of these options will bring you to this set up window.

ﬁ' CodeSmith Generator £.0.2.14171 Setup

Change, repair, or remove installation

Select the operation you wish to perfarm.

gﬁ

[Change]

Lets you change the way features are installed.

[Repair]

Repairs errors in the most recent installation by fixing missing and corrupt

files, shortcuts, and registry entries

[Remove]

Removes CodeSmith Generator 6.0,

2.14171 from your computer.,

Click 'Change' to continue with editing your features.

ﬁ! CodeSmith Generator 6.0.2.14171 Setup

Custom Setup

Select the way you want features to be installed. !: _ﬁ,

Click the icons in the tree below to change the way features will be installed.

= {Qv| CodeSmith Generator

e 20w | MSBuild Task
e (=0 v | SaEMples

Installs the core Generator

<= - | Wisual Studio 2010 Inteq components,

This feature requires 16MB on your
hard drive. Ithas 0 of 3
subfeatures selected. The
subfeatures require 45ME on your
hard drive.
4 1} [3
[Reset J[Disk Usage] [Back][Mext ” Cancel

From this window, you can:

Reset - Resets all configurations to their default settings

Disk Usage - Displays the current space available in all of your hard drives.
Back - Brings you to the start page.
Next - Continues with the changes with the current changes made.

® Cancel - Cancels the setup and closes the window.

Customizing Your Setup

The previous window will allow you to customize which components of CodeSmith Generator you want to install. You can do this by clicking on
the icon to the left of the component you want to change. You will be presented with the following options.

1. Will be installed on local hard drive.

® This means the feature will be installed in your current default hard drive.
2. Entire feature will be installed on local hard drive.

® This means that the parent and child features will be selected as "Will be installed on local hard drive".
3. Feature will be installed when required.

® The feature will be installed when you perform an action that requires it.
4. Entire feature will be unavailable.

® The selected feature won't be installed at all.

‘E-J CodeSmith Generator 6.0.2.14171 Setup =l

Custom Setup -g
Select the way you want features to be installed.

Click the icons in the tree below to change the way features will be installed.

=) &~ | CodeSmith Generator Installs Visual Studio 2010

= - | [ETE bR lae | integration features.

il = Wil be installed on local hard drive

=18 Entire feature will be installed on local hard drive

our
=0 Feature will be installed when required
¥ Entire feature will be unavailable
i E— —
Reset][Disk Usage] [Back]I Mext I[Cancel

Click next after you have finalized your changes to finish the setup.

Next: Installing CodeSmith Generator
Uninstalling CodeSmith Generator

Uninstalling

Uninstalling CodeSmith Generator is no different than most programs. Just go to your control panel, Programs, then select 'Uninstall a program'.

-:--El-g

O@v@ v Control Panel »

- | +y | | Search Control Pane!

o]

Adjust your computer's settings

System and Security

]
4.3 Review your computer's status
' Back up your computer
Find and fix problems
AL
-,
./ Hardware and Sound
ﬁ‘ View devices and printers
Add a device
K

MNetwork and Internet

View network status and tasks

Programs

Uninstall a pregram

Choose homegroup and sharing options

2
3
®

View by: Category *

User Accounts and Family
Safety

'@' Add or remove user accounts

'@' Set up parental controls for any user

Appearance and
Personalization
Change the theme

Change desktop background
Adjust screen resolution

Clock, Language, and Region
Change keyboards or other input
methods

Change display language

Ease of Access
Let Windows suggest settings
Optimize visual display

After you select 'Uninstall a program’, the below window will appear. From there you just need to select "CodeSmith Generator (Your version

number)" and then select 'Uninstall' on the top bar.

[5l <« Programs » Programs and Features

Control Panel Home

View installed updates
'@' Turn Windows features on or

il Organize ~

Mame

Uninstall

Change

Uninstall or change a program

Repair

Publisher

To uninstall a program, select it from the list and then click Uninstall, Change, or Repair.

| GQ CodeSmith Generator 5.0.214171

CodeSmith Tools, LLC

1 [

Uninstalling CodeSmith Generator is usually a one-step process, unless you already have some custom templates set up. In that case, you will be

presented with this window.

#

Remove Samples and Configuration

S5

.

Do you want to remove all Generator samples and configuration data?

WARNING: If you have modified any samples, your changes will be lost.

[fes] [Mo

A

Select yes to delete all samples in the samples directory you specified when you installed CodeSmith Generator. By default, the samples directory
is here (C:\Users\(User Name Here)\Documents\CodeSmith Generator\Samples), so if you need to make some back up files make them before
selecting yes. Or select no to keep your samples directory for the next time you install CodeSmith Generator.

Upgrading CodeSmith Generator Templates

We strive to ensure that CodeSmith Generator templates are 100% backwards compatible. However, in very rare circumstances break
backwards compatibility to progress the platform. When we do break backwards compatibility, we ensure that the benefits of breaking
compatibility greatly outway the benefits of not breaking compatibility. Please refer to this document when upgrading CodeSmith Generator to

ensure that you have the smoothest experience possible.

Upgrading from all previous versions of CodeSmith Generator
Please read this guide when upgrading from any version of CodeSmith Generator.

Recompiling Template Assembly References

If you have a custom template that references an assembly that references CodeSmith Generator or you are using one of our Template
Frameworks (E.G., PLINQO, CSLA...) then please continue reading this step.
When upgrading from any version of CodeSmith Generator, please follow the following steps:
1. Locate your templates source code folder or source project (The source code for our Template Frameworks can be found in the
templates \Source\ directory) and open the Visual Studio solution.
2. Update all assembly references that reference CodeSmith.Engine to .NET 4.0 (This does not mean that the template you write has to
target .NET 4.0! This just means that your CodeSmith Generator class libraries need to be compiled as .NET 4.0)
3. Update all of the Visual Studio project's assembly references in your Solution that reference CodeSmith assemblies. The references need
to be updated to use the new CodeSmith Generator assemblies which are located in the Generator Program Files folder.
4. Add a project reference to CodeSmith.Core to all Visual Studio projects that reference CodeSmith assemblies. This assembly is located
in the CodeSmith Generator Program Files bin folder.
5. Rebuild your Solution. If you are updating an existing Template Framework Solution. Please ensure that each projects compiled
assemblies are being copied to the correct folder after build (E.G., from the \ProjectName\bin\debug folder to the templates

\common\ folder).
6. Regenerate.

ﬂ The source code for our Template Frameworks can be found in the templates Source directory.

Downloading the latest Templates

CodeSmith Generator ships with the latest version of the templates so there is no need to go out and download the latest set of templates.
However, the latest set of templates can be found on the CodeSmith Generator Google Code project.

Updating existing CodeSmith Generator Projects

After upgrading to the latest version of CodeSmith Generator, please ensure that your Generator Project files are up to date. You can do this by
opening Manage Outputs and ensuring that the template location points to the latest version of the templates.

Upgrading from CodeSmith Generator 2.x, 3.x, 4.X, 5.X

Updates to CodeTemplates Validate method

If you are using a custom CodeTemplate that overrode the Validate method as shown below:

.

After the method signature has been changed, you will need to update the code implementation to return a list of validation errors.

This change ensures that the CodeTemplates State property will always be correct and any exceptions thrown in GetCustomValidationErrors() will
not affect the generation process.

Updates to IMergeStrategy.Merge() method signature

If you are using a custom Merge Strategy please update the Merge method signature as shown below:

http://www.codesmithtools.com/product/frameworks
http://msdn.microsoft.com/en-us/library/bb398202.aspx
http://msdn.microsoft.com/en-us/library/f3st0d45.aspx
http://www.codesmithtools.com/product/frameworks
http://code.google.com/p/codesmith/downloads/list

public string Merge(CodeTenpl ate context, string sourceContent, string tenplateQutput) { :
return tenpl at eQut put; :

public string public string Merge(CodeSm th. Engi ne. Mer geCont ext cont ext) :
return context. Qut put Content; H

After the method signature has been changed, you will need to update the code implementation to use the various properties located on the
MergeContext.

These changes were made to provide additional information for Merge Strategies (E.G., InsertClass Merge Strategy) as well as additional
information to be added to the MergeContext object in the future without breaking the API.

lﬂ Template Frameworks like PLINQO have already been updated for these changes and will not require a recompile!

Encoding changes
Templates are now generated as UTF-8, this change was made to be more consistent with various other editors like Visual Studio. If you wish to

have files generate using ascii or a different encoding please set the ResponseEncoding CodeTemplate Directive attribute on your master
template before generating. This also ensures that your template output will always be consistent when generating in any culture.

SchemaExplorer Type Converter changes
The SchemaExplorer Type Converters have been removed and replaced with a single SchemaObjectFactoryTypeConverter object. This new

Type Converter handles the conversion for all SchemaExplorer types deriving from SchemaObjectBase or SchemaObjectCollection. If your
template code is using a SchemaExplorer Type Converter as shown below it can be safely removed.

[TypeConvert er (typeof (SchemaExpl or er. Tabl eSchenaCol | ecti onTypeConverter))]

Upgrading from CodeSmith Generator 2.x
Please read this guide when upgrading from CodeSmith Generator 2.x. CodeSmith Generator Templates are almost 100% compatible with
CodeSmith Generator 2.x templates, there are a couple breaking changes that CodeSmith Generator 2.x users should be aware of when

upgrading. You may need to make minor changes to your CodeSmith Generator 2.x templates to have them work perfectly in the latest version of
CodeSmith Generator.

CodeTemplate Directives are required

CodeSmith Generator requires every template to have a CodeTemplate directive. The CodeTemplate directive must be the first thing in the file,
with the possible exception of template comments.

Changes to template comments

CodeSmith Generator 2.x allowed you to use several formats for template comments that the latest version of CodeSmith Generator does not
allow. In particular, these two formats are no longer accepted for template comments:

H <% // sone tenpl ate header % H
H <% - sone coment % :

In the latest version of CodeSmith Generator, the only acceptable format for template headers and comments is as follows:

http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/f7c5ec19-dbde-07de-9594-b3cd361ac606.htm

; <% - sone tenpl ate header --% :
: <% - sone comment --% :

Note that other formats are still valid when you want to include a comment in the generated source code. This is distinct from including a comment
in the template that does not appear in the generated code. To generate a C# comment, you still use the format

<% // some C# comment %

<% ' sone VB coment %

Register sub-templates declaratively

Although you can still programmatically compile sub-templates, it is more efficient to use the new Register directive instead.

Upgrading existing Property Set Xml Settings

In previous versions of CodeSmith Generator prior to CodeSmith Generator 4.0. CodeSmith Generator stored property settings in an Xml
document. An entirely new format was built to replace the existing format; the new format is named CodeSmith Generator Project file. It has many
improvements and capabilities over the previous format. A command line option was built to upgrade existing stored Xml Property Settings to the
new format.

Upgrade Instructions

To upgrade to the new format, we will be using the CodeSmith Generator Console application. The first step is to launch command prompt and
type in:

o
0
o
x
®
©
=
o
©
@
=
=
<
n
@
jut
x
2
-
c
©
Q
=
Q
o
@
)
%
n
°
O
%]
©

ﬁ If you are encountering any issues while upgrading to the new format, please contact support.

Introduction and Tutorials
For our Introduction and Tutorials of CodeSmith Generator we offer the below sections.

Main Features

There are many features available in CodeSmith Generator. In our Main Features page you will see the features that really set CodeSmith
Generator apart and how powerful it can be.

What's New

Check out our What's New section to see the features that we added for each new version.

Tutorials
Tutorials is for any CodeSmith Generator user and was designed to help get our users up and running in no time flat.

Main Features

At its most basic, CodeSmith Generator is an application to generate code by combining templates with metadata. Within that framework, it
includes a number of powerful features:

http://www.codesmithtools.com/contactus

A powerful template language similar to ASP.NET.

A simple user interface for quick interactive code generation

An object model that allows your templates to interact directly with the CodeSmith Generator engine

A complete integrated development environment (IDE) for CodeSmith Generator templates

Strong Integration within Visual Studio for executing and managing your code generation.

Powerful code generation automation using CodeSmith Generator Projects, console-based code generation, and MSBuild task.
Interactive debugging features for tracking down template errors

Flexible metadata providers including .NET types, database connectivity, XML support, and custom metadata sources
Console-based code generation for use in automated build processes

And many more features which can be found here.

What's New

For a full change log of all the new features and bug fixes for each version of CodeSmith Generator be sure to look at the CodeSmith Generator
Release Blog.

CodeSmith Generator 6.0

Brand new template editor integrated right into Visual Studio 2010! CodeSmith Generator Studio has been removed as the Template
Editor is now integrated into Visual Studio 2010. We are also working on a standalone editor!

Vastly improved IntelliSense with support for directives, extension methods, lambdas, generics, anonymous types, parameter information
and more!

Improved Syntax Highlighting and Template Output Highlighting support.

Brand new parsing engine that should provide much better template errors as well as a great foundation to build on for the future.

.NET 4.0 support in templates.

PropertyGrid has been updated to allow property filtering, collection editing, default instance creation, auto expanding of objects and
much more.

Added Go to Definition and View Code support!

SchemaExplorer collections have been updated to use generic collections that give a bunch of new features like LINQ support.

New default property serializer that will enable serialization of just about any object and not require custom property serializers to be
written. You can now just create an object in the template and use it as a property type.

Brand new Template Explorer that provides complete shell context menus and other features. If you are using something like Tortoise for
version control, you will now have access to those features right inside of Template Explorer.

64bit assembly support.

Most of the engine is multi-threaded and should make better use of multiple core machines.

New Visual Studio Item templates to help you create templates faster.

Added Code Navigation support.

Unified Generation Experience!

Improved documentation for Generator 6.0.

Added the ability to automatically generate Xml documentation inside of your templates by typing " or /// before a property or method.
Many other small improvements and bug fixes.

CodeSmith Generator 5.3

Added CS_IsUserDefinedTableType as an ExtendedProperty to the SqlSchemaProviders ParameterSchema object. This will return true
if the type is a User-Defined Table Type.

Added support for Function-Based Indexes in the OracleShcemaProvider.

Added CS_IndexType and CS_ColumnExpression as an ExtendedProperty to the OracleSchemaProviders IndexSchema object.
Added the ability to save property enumerations that do not have a default value of O defined.

Added the SQLAnywhereSchemaProvider. This has been tested against Sybase IAnywhere 11.0.

Added the ISeriesSchemaProvider. Requires iSeries OS v5.4 or greater and has been tested against v6.1.

Added Flash support to the CodeSmith Generator Studio browser.

Added the ability to silently uninstall CodeSmith Generator using the /quiet flag.

Added initial support for GetExtendedProperties and GetCommandResultSchemas to the PostgreSQLSchemaProvider.

Updated the DbType and native type mappings in the PostgreSQLSchemaProvider.

Updated the ADOXSchemaProvider error handling to better support Microsoft Visual FoxPro 9.0.

Renamed CodeSmith to CodeSmith Generator and updated product logos, license agreements and start page.

Updated the Microsoft Connection String Designers to the latest version.

Updated the SqglSchemaProvider to support Table UDT's as a ParameterSchema.

CodeSmith Generator 5.2

Added Visual Studio 2010 Beta 2 Support (Beta).

Added option to the installer to choose a different sample folder.

Fixed a bug where the following error would occur: Unable to cast object of type 'SchemaExplorer. ADOXSchemaProvider' to type
'SchemaExplorer.IDbSchemaProvider'.

Fixed a bug where multiple licenses would not be deactivated during deactivation.

Added upgrade support for previous versions of CodeSmith.

Fixed a bug where an exception would be thrown when an invalid connection string would be passed into any connection string editor.
Fixed a bug where optional merged properties in a Class Library were not being marked as optional.

Fixed a bug where selecting a blank DataSource from a Ul Picker would throw a NullReferenceException.

Added a detailed error message to FileNameEditor, it will now let the user know that there GetFileName override is throwing an

http://www.codesmithtools.com/product/generator#features
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/Product_Updates/b/generator_releases/default.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/06/02/Announcing-The-CodeSmith-Generator-6.0-Visual-Studio-Template-Editor.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/10/05/codesmith-generator-6-0-go-to-definition-and-view-code-support.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/21/codesmith-generator-6-0-template-explorer.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/08/codesmith-generator-6-0-editor-improvements.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/10/12/unifying-the-codesmith-generator-experience.aspx
http://community.codesmithtools.com/CodeSmith_Official_7/b/announcements/archive/2011/07/21/codesmith-generator-6-0-template-explorer.aspx

exception.

Fixed an issue where the property grid would be blank but as soon as you clicked on the property it would appear.

Fixed a rare bug where CodeSmith Studio couldn't resolve a template's referenced assemblies on the very first load.
Fixed a bug where the Property Grid wouldn't refresh properties that had been changed in an assembly.

Fixed a bug where the Splash Screen would attempt to be closed during a race condition causing an Exception.

Fixed a bug where the Uninstaller would not close the registry key it opened.

Fixed a bug where a Required Property would be ignored when generating from CodeTemplateGenerator.

Added an option to the tool bar in CodeSmith Studio to add a new blank template.

Updated CodeTemplateGenerator to use the template cache when clicking the build button.

Fixed a bug where clicking Build in the CodeTemplateGenerator dialog would discard property data.

Added a natification to the CodeTemplateGenerator when generating a template that's OutPutType is set to none.
Added support for SQL Functions (table-valued and scalar-valued).

Added IncludeFunctions Property to SchemaObjectBase, setting this to true enables SQL Function support.

Fixed a bug in DatabaseSchemaSerializer where a changed property would never be changed back to true (DeepLoad).
Added Filtering support to all Command Ul dialogs.

Added support to set the Command Ul DataSource based on the IncludeFunctions property.

Fixed various memory leaks greatly reducing CodeSmith's footprint.

Fixed a bug where cached data would be deleted prematurely.

Fixed a bug where renaming a folder shortcut to a previous name would throw a NullReferenceException.

Added overloads for CommandResultColumnSchema and ParameterSchema to GetVBVariableType and GetCSharpVariableType in the
SQLCodeTemplate and VBSqlCodeTemplate.

Fixed a bug that prevented the Visual Studio Integration from unlocking referenced assemblies.

Fixed a bug where the Active Snippets configuration dialog was not working as expected.

Fixed a bug where the Active Snippets Configuration would throw an OutOfRangeException when arranging Arguments.
Fixed a bug where one could not activate CodeSmith inside of Visual Studio.

Fixed a bug where generating a file to a directory outside of the Visual Studio Solution would throw an exception.

Fixed a bug where closing Visual Studio during generation would throw a NullReferenceException.

Fixed a bug where an XML Namespace error would occur in Visual Studio when generating .NET 3.5 console applications.
Fixed a bug where Saving a Setup Project file during generation would throw a COMException.

Fixed a bug where the DataSource manager would throw an exception when loading up the VistaDBSchemaProvider.
Fixed a bug in the SQLSchemaProvider where the where logic of the command queries would return incorrect results.
Removed the permissions (id) check in SQLSchemaProvider GetCommand's queries.

Fixed a bug in the SQLSchemaProvider where GetCommandResultSchemas was not correctly handling temp tables.
Fixed a bug in the SQLSchemaProvider could throw a NullReferenceException on invalid extended table data.

Fixed a bug in the SQLSchemaProvider where connecting to a replicated database would cause a timeout to occur.
Fixed a bug in the PostgreSchemaProvider where multicolumn indexes were not handled correctly.

Updated the PostgreSQLSchemaProvider assembly references to the latest version.

Fixed a bug in the SqlCompactSchemaProvider where ROWGUIDCOL was not included in the GetTableColumns().
Fixed a performance bug in MySQLSchemaProvider, where DataReader.NextResult() or DataAdapter.Fill() would take 10-20 seconds to
return data.

Fixed a bug in the OracleSchemaProvider where the HasExtendedPropertiesTable could return a false positive.
Updated the custom property examples: added a Collection and Drop Down example.

Updated the Command Wrapper templates to support SQL Functions as well they can be used in Visual Studio integration.
Added an HTML photo gallery example.

The Kinetic Framework - Updated to latest version.

CSLA - Updated to version 1.1.1.

PLINQO - Updated to version 4.0.

NHibernate - Updated to version 1.1.5.

Updated the CodeSmith documentation.

Various other minor changes.

CodeSmith Generator 5.1

Fixed a bug where removing a data source from Database Explorer wouldn't permanently remove the data source.

Fixed a threading error when removing a data source from Database Explorer.

Fixed a bug where CodeSmith would throw an exception when it couldn't access the systems registry.

Fixed a bug where Copy Properties would throw an exception when called on a unsaved template.

Fixed a bug where the SqlCompactSchemaProvider connection string builder class could corrupted additional connection string options.
Fixed a bug where the SqlCompactSchemaProvider timestamp/rowversion columns were returning a "rowversion" native type name,
should be "timestamp".

Added CodeSmith Customer Improvement Program.

Various other minor changes.

Fixed a bug where Generate Outputs would throw an error if a Visual Studio Solution contained a Setup and Deployment project.
Various minor updates to Visual Studio's Integration.

Updated Visual Studio Integration to unlock assemblies after generation.

Fixed a bug where a CSP in Solution folder causes ERROR: Object reference not set to an instance of an object.

CodeSmith Studio now requires that .NET 3.5 SP1 to be installed.

Fixed a bug where CodeSmith Studio would attempt to save a csp for a unsaved template.

Fixed a bug where a NullReferenceException would be thrown when toggling the properties window when no template properties existed.
Fixed a bug where extracting mapping files could cause an exception.

Added Widening, Narrowing, Like, Let, CUInt, CULng, CUShort, and Operator to the VB.NET keyword list.

Added var to the C# keyword list.

Fixed a bug when using Intellisense and Math. or some variable names would throw an ArgumentOutOfRangeException.

Updated CodeSmith Options dialog's.

Added support to give feedback and send detailed error information from within CodeSmith.

Updated Menu in CodeSmith Explorer, Users can now view the mapping editor, submit feedback, help, or configure options.
Updated Manage Outputs and child dialogs to save the window dimensions.

Added IndexedEnumerable, this is used to smartly enumerate collections and get a IsEven, IsLast, IsFirst property.

Added Ling Querying support to all SchemaExplorer Collections.

Added MergeProperty functionality for parsing properties from a CodeTemplate that inherits from an assembly.

Added Insert Class Merge Strategy.

Added CodeParser.

Added support to detect an embedded SDK License.

CodeSmith Configuration no longer uses xml files.

Updated the documentation for IDbSchemaProvider and DataObjectBase.

Fixed a bug in OracleSchemaProvider where AllowDBNull would always be set to true for view columns.

Fixed a bug in OracleSchemaProvider where the TableSchema.PrimaryKeys collection wasn't being populated correctly.

Updated OracleSchemaProvider's configuration to be configurable via the options dialog.

Added SQL CLR Support to the SqlSchemaProvider. To see if a command is a CLR procedure check the "CS_IsCLR" extended property.
Fixed a bug in SQLSchemaProvider where an xml index would be set to null after upgrading a SQL Server 2005 database to SQL Server
2008.

Fixed a bug in SQLSchemaProvider where the ExtendedData query was missing the PropertyBaseType and Minor columns when
querying SQL Server 2000 ExtendedData.

Added PostgreSQLSchemaProvider, SglCompactSchemaProvider, SQLiteSchemaProvider, VistaDBSchemaProvider.

Updated .netTiers to version 2.3 RTM.

Updated PLINQO to version 3.0.

Added CSLA Beta templates.

Various other minor changes.

CodeSmith 5.0

Added a tab for editing variables in the CodeSmith Project settings dialog.

Made it so that any .csp variables are automatically used when there is a string matching the variable value in the property values.
Made it so that variables are automatically created for connection strings stored in .csp files so that the connection string isn't repeated.
Made schema explorer designers load their data sources async so that the Ul would not lock.

Changed all SchemaExplorer designers to display in Object (Owner) format so that you can type the first couple letters to jump to the
object you are looking for.

Added ability to override plural/singular forms of words to the StringUtil. ToPlural and StringUtil. ToSingular methods.

Added ability to specify Filter="SomeTableSchemaProperty" on ColumnSchema directives which will filter the list of columns in the
designer based on the table selected in the specified property.

Added new RegisterReference method to CodeTemplate to indicate which assemblies your generated code relies on so that they can be
automatically added in Visual Studio.

Added a menu item for managing data sources to the Visual Studio CodeSmith menu.

Various improvements to the OracleSchemaProvider including full extended property support.

Changed ColumnSchema designer to use a treeview so that all columns for all tables aren't loaded at once.

Added ability to deep load all schema information at once which results in huge performance improvements. This is used by setting the
DeepLoad attribute on any SchemaExplorer property in your template. This would typically be used when you know you are going to use
all of the schema information from a database.

Ability to use .net 3.5 features in templates including LINQ. This is accomplished by setting the CompilerVersion attribute on
CodeTemplate to "v3.5".

CodeSmith Projects now have a single file output mode to generate all template outputs into a single file.

Added Ability to generate individual project outputs.

Made it so that files being generated from a CodeSmith Project are checked out of source control before being edited.

Improved the custom tool upgrade process so that it works 100% in all scenarios without having to make manual changes afterward.
CodeSmith Projects can now add files to Visual Studio as code behind files to other generated files.

CodeSmith Projects can now set a generated files build action.

Added ability to resolve assemblies located in paths relative to the template now using Path attribute. Looks in template folder and \bin
folder by default.

Optimized template caching algorithm allows for much improved performance.

Templates use partial classes now so you can have partial class code behinds and have access to template properties from the code
behind file.

Added GetPropertyAttribute and SetPropertyAttribute to CodeTemplate.

Property attribute values are added for any non-recognized attributes on Property, XmlProperty and CodeTemplate directives.
Re-organized all sample templates and projects into a more logical folder structure.

Added new NHibernate templates in both C# and Visual Basic.

Made various improvements to the Plingo templates.

.netTiers updated to the 2.3 version of the templates.

Added VB versions of many sample templates and projects.

Included the latest version of the NuSoft framework templates.

Many other minor enhancements, performance improvements, and bug fixes.

CodeSmith 4.1

Auto property refresh when running your templates including SchemaExplorer objects and external XML sources.

Added IDbConnectionStringEditor interface so schema providers can provide connection string editing interfaces. A connection string
editor was implemented for SqlSchemaProvider, ADOXSchemaProvider and OracleSchemaProvider.

Added Indexes and Keys to the SchemaExplorer tool window in CodeSmith Studio.

Added support for Visual Studio 2008 (Orcas).

Added NoWarn attribute to CodeTemplate directive to allow ignoring compiler warnings.
Added several new sample templates as well as source code for the SglSchemaProvider.
Many other minor enhancements, performance improvements, and bug fixes.

CodeSmith 4.0

CodeSmith Projects (.csp) - This feature makes automating your code generation process really easy and consistent whether you are
working from inside of Visual Studio 2005, MSBuild, Windows Explorer, a command line / batch file, or CodeSmith itself.
ActiveSnippets - Imagine Visual Studio 2005 snippets, but with the full power of CodeSmith available to execute any logic or access any
complex metadata (including database schema and XML data) to control the output of your snippets.

CodeSmith Maps (.csmap) - This feature will allow you to create dictionary style maps of things like SQL to C# data type mappings.
.netTiers 2.0 - The .netTiers templates have been greatly enhanced and included with CodeSmith 4.0.

NHibernate Templates - NHibernate templates have now been included and are able to get you started with using NHibernate.

CSLA .NET 2.0 Templates - They latest CSLA .NET 2.0 templates have been included and are greatly improved.

DbSnapshot Templates - Script all objects and table data out from a Microsoft SQL Server database.

Extended Property Management - You can now manage schema extended properties inside of CodeSmith Studio.

Property Persistence - CodeSmith now remembers the property values from the last time you executed a template.

Greatly enhanced Visual Studio 2005 integration.

Support for running CodeSmith in non-admin accounts as well as in Vista UAC.

CodeSmith Studio
®* Many improvements have been made to the performance of the IDE.
® [ntelliSense has been improved (including ctrl-space support) in both templates and code behind files.
® Added recent news items to the start page.

CodeSmith Explorer
® Supports drag and drop to move/copy files.
® Improved performance.

CodeSmith Engine
® PropertyChanged event is now exposed on each template.
Added OnChanged attributes to Property and XmlIProperty directives.
XmlProperty now stores a file reference to the source XML instead of the XML contents.
XmlProperty now shows the XML file name in the property grid and can be edited.
Added ContextData object to templates for storing various non-persistent state which is shared with sub-templates.
IPropertySerializer interface has been changed to give property serializers access to more contextual information.
Added a Initializing state to the template State enum.

SchemaExplorer
® |mproved handling of SQL Server BLOB DataTypes
® Improved ParameterSchema meta-data in CommandParameterSchema now containing DefaultValue Schema Information.
® Ton of new system extended properties added to SchemaExplorer objects.

Many other minor enhancements, performance improvements, and bug fixes.

CodeSmith 3.2

Built and optimized for .NET 2.0 / Visual Studio 2005
CodeSmith MSBuild task
Numerous other minor improvements and bug fixes

CodeSmith 3.1

New help file
Numerous other minor improvements and bug fixes

CodeSmith 3.0

Completely re-written parser/compiler which is faster and correctly reports line numbers from the template instead of from the compiled
template source. This results in a much nicer debugging experience.

XML support - There is now an XmlProperty directive that makes working with XML much easier. This directive will give you a strongly
typed object model to work with if you provide an XSD schema or it will give you an XmIDocument instance if you don't. This feature
combined with the new IntelliSense feature make working with XML a breeze.

Statement completion in CodeSmith Studio (similar to Visual Studio's IntelliSense)

Template caching.

New Register directive that makes working with sub-templates much nicer.

Console client has been improved to include a batch mode, setting properties from the command line, and the ability to use any merge
strategy.

Merge strategies have been overhauled to be more extensible and can be setup to work with any language.

New PreserveRegions merge strategy has been introduced.

DbDocumenter templates have been overhauled to be a best-practices sample for 3.0.

Indented output rendering.

IPropertySerializer interface can be implemented to allow for serialization of custom property types.

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using%20_a_CodeSmith_Project_to_Generate_Anywhere.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using_ActiveSnippets.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using_a_CodeSmith_Map.html
http://www.nettiers.com/
http://www.codeplex.com/Wiki/View.aspx?ProjectName=CSLAcontrib
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Manage_Extended_Properties_Through_Schema_Explorer.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Cached_Property_Set.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/XML_Support.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Statement_Completion.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Using_Sub-Templates.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Specifying_Properties_on_the_Command_Line.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Specifying_a_Merge_Strategy.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Specifying_a_Merge_Strategy.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Merge_Strategies.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/PreserveRegions_Merge_Strategy.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_Response_Object.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Adding_Property_Set_Support.html

®* New PreRender and PostRender methods that can be overridden in your templates.
® Ability to auto-execute SQL scripts after generating them.
® Ability to render to more than one TextWriter at a time.

® Tons of other minor improvements and bug fixes.

Tutorials

The CodeSmith Generator Tutorial includes the various sections which will quickly help you become a master of Code Generation. Although
there's a lot of depth to CodeSmith Generator, you can get started with it quickly. In this section of the documentation, we'll walk you through a
few common code generation scenarios.

Getting Started

The best way to understand the power of CodeSmith Generator is to try it out. Although CodeSmith Generator has many advanced features, you
can begin using it to help produce code without mastering all of those features. In this section, you'll learn how to use Generator to generate a
useful piece of utility code - specifically, a strongly-typed hash table class.

Writing your first Template

Knowing how to execute templates that others have written is the first step towards getting started with CodeSmith Generator, but to realize the
full benefit of CodeSmith Generator in your day to day development tasks, you'll need to write your own templates. In this tutorial, you'll learn how
to do just that, working through the entire process of writing a CodeSmith Generator template from start to finish.

Write a Template with Database Metadata

One of the key uses for code generation is to build code based on database schema. CodeSmith Generator enables this scenario through the use
of the SchemaExplorer assembly, which provides types for working directly with SQL Server or ADO data as well as designers that can be used
to access those types from CodeSmith Generator. In this tutorial, you'll see how you can use the information available through SchemaExplorer,
together with scripting code, to make short work of building a complex T-SQL script.

Getting Started

The best way to understand the power of CodeSmith Generator is to try it out. Although CodeSmith Generator has many advanced features, you
can begin using it to help produce code without mastering all of those features. In this section, you'll learn how to use Generator to generate a
useful piece of utility code - specifically, a strongly-typed hash table class. This exercise should take you no more than five minutes to complete,
but it will introduce you to Template Explorer, and show you the power of Generator's template-based code generation scheme.

Next: Launching Template Explorer
Launching Template Explorer

One way to start a code generation session is with Template Explorer. Just as Windows Explorer serves to organize files and folders stored on
your computer, Template Explorer serves to organize templates. To launch Template Explorer, select CodeSmith Generator Explorer from the
CodeSmith Generator program menu. This will open Template Explorer with an initial view showing all of the folders containing templates in your
CodeSmith Generator installation.

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_OnPreRender_Event.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_OnPostRender_Event.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Auto_Executing_Generated_SQL_Scripts.html
http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Outputting_Multiple_Files.html

p
!, CodeSmith Generator &plnrerglﬂlg

= ™~ @

4 | CodeSmith Generator Samples *
») ActiveSnippets I
> |, Database
> Bxamples
>, Frameworks i
4 Other 7

s AJAK
4 | Collections
4 | Advanced

{% ArrayList.cst

{@ BindablefrrayList.cst
#] CommonScript.cs
{% DicticnaryList.cst
{% Hashtable.cst

{@ [Dicticnary.cst
L5 Thict oes

Important Note: Generator Explorer is the name of the application as seen in the tool bar. However, it is just a wrapper
around Template Explorer.

Check out this video tutorial for an overview on the Template Explorer:
Next: Opening a Template

i If you have not yet activated your copy of CodeSmith Generator , you'll see a product activation dialog box when you launch
CodeSmith Explorer. Click Try to proceed with this example, or Register to proceed with product activation.

Opening a Template

Templates are patterns for generated code. CodeSmith Generator comes with a set of useful templates to get you started. You can also download
more templates from our CodeSmith Community Site as well as share them.

You might find that as you work with CodeSmith Generator, you'll start to develop your own custom templates. Template Explorer makes it easy
to generator a template quickly as well as organize templates in folders so you can quickly find the template you are looking for.

http://community.codesmithtools.com/File_Share/default.aspx

-
f}& CodeSmith Generator &plnrerglﬂlg

= ™~ @

4 | CodeSmith Generator Samples *
») ActiveSnippets I
> | J Database
> Bxamples
>, Frameworks i
4 | Other 7

s AJAK
4 | Collections
4 | Advanced

{% ArrayList.cst

#E] BindableArrayList.cst
#] CommonScript.cs
{% DicticnaryList.cst
{% Hashtable.cst

{@ [Dicticnary.cst
L5 Thict oes

o To open a folder, click on the arrow sign to the left of a specific folder to see the list of templates stored in the folder.

The .cst file extension stands for "CodeSmith Generator Template." You can probably guess from the names what the various templates do. For
example, the HashTable.cst template, which can be found in the Other\Collections\Advanced folder, generates C# code for a hash table class. To
open this template, just Double-click the template or right-click the template and select the Execute menu item.

-
5;, Hashtable.cst - CodeSmith Generator =

HE L@ 2w e fadl|
ClassMame custHashTable
ItemType customer
ItemValueType]

KeyType string
KeyWalueType]|
PairType stringcustomerEntry
4 Deep Cop
DespLopy |
DespCopyltem Clone
4 Mamespaces
ImportNamespace
IncludeNamespaces
ItemMamespace
KeyMamespace
TargetMamespace
4 Options
Accessibility Public
Includelnterfaces
ItemCustomSearch 0
KeyCustomSearch |
PairType

The key-and-value pair type of the collection.

Generate

e ————

Next: Setting Properties
Setting Properties

A code generator that generated the exact same code every time wouldn't be very useful (you might as well just paste in a saved code file, if
that's what you want). CodeSmith Generator templates use properties to let you customize the generated code. When you open a template from
Template Explorer, the template's property sheet shows you all of the properties that the template requires. You need to supply values for these
properties before CodeSmith Generator can generate the code for you. The HashTable.cst template that we opened in the previous step requires
four string properties (ClassName, ClassNamespace, ltemType, and KeyType) and one enumerated property (Accessibility). You can type any
value you like for a string property; an enumerated property presents you with a drop-down list of choices when you click in it. For this first
experiment, fill out the property sheet this way:

[%, Hashtable.cst - CodeSmith Generator [= L= ﬂ-‘
Filter 2
4
ClassMame custHashTable
ItemType customer
ItemValueType]
KeyType string
KeyWalueType]|
PairType stringcustomerEntry
4
DespLopy |
DespCopyltem Clone
4
ImportNamespace
IncludeNamespaces
ItemMamespace
KeyMamespace
TargetMamespace
4
Accessibility Public
Includelnterfaces
ItemCustomSearch 0
KeyCustomSearch |
PairType
The key-and-value pair type of the collection.
Generate
e ————

One of the best things about CodeSmith Generator is that properties can be based on many different types of metadata. For instance, you can
create a property that presents a list of all of the tables in a database, letting the user choose a table when they're generating the code. You can
learn more about this in the section on Driving Templates with Metadata.

You can also filter the properties that are shown in the property sheet, by typing the name of the property in the Filter Search
Box located above the property sheet.

Next: Generating Code
Generating Code

When you've finished setting properties for the template, you're ready to generate code. To do this, click the Generate button at the bottom of the
template's property sheet. CodeSmith Generator will take the property values that you entered and combine them with the template to create the
code, and display it in an output window. The generated code can be edited by typing in the generated output window. You can also easily copy
or save the generated text by clicking on the respected buttons at the top of the output window.

In this case, the code window contains around 320 lines of generated code for the hash table class, implementing the IDictionary, ICollection,
IEnumerable, and ICloneable interfaces. There's nothing there that you couldn't write yourself if you're a reasonably experienced C# developer -
but why bother? This is the sort of routine work that CodeSmith Generator is ideally suited for. With CodeSmith Generator, you can devote your
time and energy to identifying patterns in your code, turning them into templates, and then reuse them with maximum flexibility in the future.

r
uu custHashTable.cs - Hashtable.cst Qutput E@g b‘, Hashtable.cst - CodeSmith Generator [= 2|

HSave to File %Copy to Clipboard ‘%i H E LTH ﬁg : W™ | Filter L
using System; N a4 Context
using System.Collections; = ClassMame custHashTable
ltemType customer
#region Interface IcustomerCollection ItemValueType I}
KeyType string
S <summary > yIyP 9
/#/ Defines size, enumerators, and synchronization methods for strongly KeyValueType]
£/ typed collections of <see cref="customer”/> elements. PairType stringcustomerEntry
S <fsummarys 4 Deen C
#ff <remarks: N)
/4 <brIcustomerCollection provides an <see cref="ICollection"/> Deeplopy @
/f/ that is strongly typed for <see cref="customer"/> elements. DeepCopyltem Clone
/f </remarks> 2 Na .
public interface IcustomerCollection { ImporthNamespace
#region Properties IncludeNamespaces
#region Count ItemMamespace
f# <summary> KeyNamespace
/#{ Gets the number of elements contained in the TargetMamespace
f#f «<see cref="IcustomerCollection”/>. 4 Options
A </ summary > P -
A bil Publ
/#{ <value>The number of elements contained in the cessibility uolic
/#/ <see cref="IcustomerCollection™/>.</value> Includelnterfaces
/1 <remarks»Please refer to <see cref="ICollection.Count"/» for details.</remarks> ItemCustomSearch I}
KeyCustamSearch
int Count { get; ¥ = a
#endregion Context
#region IsSynchronized (Na description)

A <summary>

//{ Gets a value indicating whether access to the
= - l :
Ready lnl Coll

Next: Inspecting the Template

Advanced: Using a CodeSmith Generator Project to Execute CodeSmith Templates from Anywhere.
Inspecting the Template

Let's take a peek behind the scenes at the HashTable.cst template itself. Remember, the template contains the instructions that CodeSmith
Generator uses to generate the code. Return to Template Explorer, but this time right-click on the template and select Edit. This will open the
template in the default template editor. CodeSmith Generator ships with a full-featured Template Editor as shown below for editing or generationg
templates.

i B
@0 Hashtable.cst - Microsoft Visual Studic (Administrator) E‘Eﬂ

File Edit View Project Build Debug Team Data Tools VisualSVM Architecture Test ReSharper Analyze
Generator Window Help

Dk > Generate -
Hashtable.cst
v{g Hashtable_cst - | ﬁ ltemCustomSearch
16 <%¥@ Property Name="DeepCopyItem" Type="System.String" Optional="True" [.E‘teg:r—'—l
<k@ Property Name="IncludeInterfaces" Type="System.Boolean" Optional="True" —

" "

<%@ Property Name="IncludeMamespaces™ Type="System.Boolean"” Opticnal="True"

[y
=J

H
1210]dx3 33e|dwiz | BF

=
@ W

<% validateClassName("Dictionary™); %»

<% ValidatePairType(); %>

<% UsingMamespace("System"); %>

<% UsingMamespace("System.Collections"); %>
<% UsingMamespace(KeyNamespace); %>
(
(

Fo L pa

u

<% UsingMamespace(ItemNamespace); %>

<% UsingMamespace(ImportMamespace); %>

<% StartMamespace(TargetNamespace); &>
<% if (IncludeInterfaces) Generatelnterfaces("IDictionary.cst™); &>
#region Class <%= ClassName %>

o

=]

[e = R L R L I LT T e T

[T -]

[Serializable]

<%= GetAccessModifier(Accessibility) ¥» class <%= ClassMName X»:
I<k= KeyType X»<%= ItemType %>Dictionary, IDictionary, ICloneable {
#region Private Fields

Ready

Later on in this help file you can learn more about the Template Editor in detail. For now, just poke around the source code for the template a bit:
it's displayed in the main editing area. As you can see, CodeSmith Generator's template language is very similar to ASP.NET. The file starts off
with a set of directives, including some that declare the various properties that appear in the template. These properties can be used later in the
template by enclosing them in special tokens. For example, line 32 of code in the template

<% Get AccessMdifier(Accessibility) % class <% O assName %:

instructs CodeSmith Generator to output the the class modifier (E.G., public, private...) followed by literal string “class" followed by the value of the
ClassName property when it is generating code.

If there's something you don't like about the HashTable template, you can change it here. For example, you might like to add some comments to
explain the reason why each interface is included. You can just type these into the template and save your changes to have CodeSmith
Generator use the altered template in the future.

Next: Where to Go from Here
Where to Go From Here

That's all you need to know to generate code using the templates that are included with CodeSmith Generator:

1. Launch Template Explorer
2. Select a template

3. Supply values for properties
4. Generate the code

But you can do much more than just use the included templates. Here are some places to continue your exploration:

® Visit the CodeSmith support site for more templates

® Learn more about template syntax to write your own templates
® Get the details on editing templates with the Template Editor

® See how to enhance your templates with metadata

® Incorporate CodeSmith into your build process

Writing Your First Template

http://community.codesmithtools.com/f/

Knowing how to execute templates that others have written is the first step towards getting started with CodeSmith Generator. But to realize the
full benefit of CodeSmith Generator in your day to day development tasks, you'll need to write your own templates. In this tutorial, you'll learn how
to do just that, working through the entire process of writing a CodeSmith Generator template from start to finish.

Next: Spotting the Need
Spotting the Need

Think about your average day of software development. Some of it probably involves brand-new innovative work that breaks new ground and
doesn't resemble anything that you've ever done before. But other parts are probably more routine. Whether it's writing the code for a public
property backed by a private variable, creating an About This Application dialog box for a new product, or designing a new page for the corporate
Web site, much of your day probably involves routine coding tasks that you've done before with only minor variations.

Any time you find yourself doing one of these repetitive tasks, you've found a candidate for code generation. Creating source code files (or Web
pages, SQL statements, HTML pages, or any other text file) with minor variations is exactly the sort of thing that CodeSmith Generator is
designed for. For example, if you're writing C# code, you know that every C# project contains an AssemblyInfo.cs file with metadata about the
project. Visual Studio automatically creates a skeleton Assemblylnfo.cs file for you when you create a new project, but it's full of comments
designed for the novice developer, and attributes for every conceivable purpose. That's fine as a teaching tool, but it's not what most developers
want to see in their source code. So typically, you'll start a new project by cutting out the junk, adding a few comments of your own, and making a
standard set of changes to the attributes that remain. That's a perfect candidate for code generation: a process that you do over and over again
with a few variations. Let's use CodeSmith Generator to generate just the Assemblylnfo.cs file that you need, without all the fluff.

Next: Creating the Template
Creating the Template

CodeSmith Generator templates are plain text files that contain three different types of content:

® Directives to the CodeSmith Generator engine

® Static content that is copied directly to the template's output

® Dynamic content (programming code) that is executed by the CodeSmith Generator engine
The dynamic content in a CodeSmith Generator template can be written in C#, Visual Basic, or JScript. For this template, we'll use C# as the
template scripting language. We can set the scripting language (C#, Visual Basic, JScript) in the CodeTemplate directive's language attribute as
shown in the code sample below). For this template you can use the Generator Template Editor or notepad.
Every CodeSmith Generator template starts with a CodeTemplate directive. This directive tells CodeSmith Generator some basic facts about the
template. Here's the CodeTemplate directive for this template:

<% CodeTenpl at e Language="C#" Tar get Language="C#" Description="Create an Assenblylnfo.cs file." %

The CodeTemplate directive sample above defines three attributes (Language, TargetLanguage and Description).
® The Language attribute specifies the scripting language that will be used within the template itself. Their are three valid attribute values
that can be defined: C#, VB or JavaScript.
® The TargetLanguage attribute specifies the language of the generated output.
® The Description attribute gives the purpose of the template.
With this single line of code saved as a file named AssemblylInfo.cst, you've got a CodeSmith Generator template. But it doesn't do anything yet.

Next: Start with the Result
Start with the Result

The easiest way to build a CodeSmith Generator template is to start with an example of the code that you want to generate - in this case, a
finished Assemblylnfo.cs file. Here's one that we'll use as we move through this tutorial:

i using System Reflection; i
i using System Runtine. Conpil er Servi ces; i
: /1 :
'\ /] Created: 1/1/1973 E
/1 Author: Bl ake N enyj ski
Y :
[assenbly: Assenbl yTitle("User storage utility")]
[assenbly: Assenbl yDescription("Hel ps manage data in |solated Storage files.")]
i [assenbly: Assenbl yConfiguration("Retail")] |
i [assenbly: Assenbl yConpany("Megaltilities, Inc.")] i
: [assenbly: Assenbl yProduct (" St orageScan")] i
: [assenbly: Assenbl yCopyri ght (" Copyright (c) Megaltilities, Inc.")] :
! [assenbly: AssenblyCul ture("")] i
! [assenbly: Assenbl yVersion("1.0.*")] :
! [assenbly: Assenbl yFil eVersion("1.0")] i
[assenbly: Assenbl yDel aySi gn(true)]

When you're looking at the file that you want to generate, you need to break the file up into three different types of content:

¢ Content that will never change
® Content that can be automatically generated.
® Content that you will prompt the user for

In the sample above, we've decided that we are going to automatically generate the Created Date on line 4, and we'll prompt the user to specify
the values for Author, Title, Description, Configuration, Company, Product, Version and FileVersion. The rest of the file we'll treat as static text. Of
course, you need to make these decisions with an understanding of how you'll use your template. In this case, for example, we've decided to
hard-code the AssemblyDelaySign attribute to always be true. If your use of that attribute varied from project to project, you would want to make
that a dynamic part of the template that you prompted the user for.

Now that we know what we want to build, it's time to get the content into the template.

Although we're not using the capability in this example, CodeSmith Generator templates can easily contain conditional logic. For
example, you could prompt the user for a value for the AssemblyDelaySign attribute, and then include additional attributes in the
template's output if they set that attribute to true.

Next: Static Content in the Template
Static Content in the Template

Adding static content to a CodeSmith Generator template is easy. If CodeSmith Generator sees something in the template that it doesn't
recognize as dynamic scripting content, it copies that content directly to the template's output. So the first step in building our new template is to
tack the existing file on to the template without any changes:

<%@ CodeTenpl at e Language="C#" Target Language="C#" Description="Create an Assenblylnfo.cs file." %
usi ng System Refl ecti on;

usi ng System Runti ne. Conpi | er Servi ces;

11

/] Created: 1/1/1973

/1 Author: Bl ake N enyj ski

/1

[assenbly: AssenblyTitle("User storage utility")]

[assenbly: Assenbl yDescription("Hel ps manage data in |Isolated Storage files.")]
[assenbly: Assenbl yConfiguration("Retail")]

[assenbly: Assenbl yConpany("Megaltilities, Inc.")]

[assenbl y: Assenbl yProduct (" St orageScan")]

assenbly: Assenbl yCopyri ght (" Copyright (c) Megaltilities, Inc.")]

assenbly: AssenblyCul ture("")]

assenbly: Assenbl yVersion("1.0.*")]

assenbly: Assenbl yFil eVersion("1.0")]

[assenbly: Assenbl yDel aySi gn(true)]

[
[
[
[

At this point, you can run the template, and you'll get output: in fact, you'll get the original file back, because there's no dynamic content in this
template at all. Next, you need to modify the template to take advantage of the power of CodeSmith Generator's dynamic scripting and interactive
metadata.

Next: Making the Content Dynamic
Making the Content Dynamic

The next step is to let CodeSmith Generator generate the parts of the output that it can calculate automatically. To do this, we'll insert C# code
into our template, using special scripting tags with the same syntax as ASP.NET. CodeSmith Generator looks for sections of your template
surrounded with <%= and %> tokens, and treats the contents of those tags as expressions to evaluate at runtime. The result of those expressions
is then inserted into the generated code in place of the scripting expression.

Here's the template with two expressions in place of the hard-coded dates in the original (the changes are on line 5):

<%@ CodeTenpl at e Language="C#" Tar get Language="C#" Description="Create an Assenblylnfo.cs file." % :
using System Refl ection; :
usi ng System Runti ne. Conpi | er Servi ces; :
/1 i
/] Created: <% DateTi me. Now. ToLongDateString() %
/1 Author: Bl ake Ni enyj ski
11 :
[assenbly: Assenbl yTitle("User storage utility")]
[assenbly: Assenbl yDescription("Hel ps manage data in Isolated Storage files.")]

assenbly: Assenbl yConfiguration("Retail")] i
assenbly: Assenbl yConpany("MegalUtilities, Inc.")] i
assenbly: Assenbl yProduct (" St orageScan")] i
assenbly: Assenbl yCopyri ght (" Copyright (c) <% DateTi me. Now. Year. ToString() % Megaltilities, H
Inc.")] H

assenbly: AssenblyCul ture("")] :

[
[
[
[

[
[assenbly: Assenbl yVersion("1.0.*")]
[assenbly: Assenbl yFil eVersion("1.0")]
[assenbly: Assenbl yDel aySi gn(true)]

Now, the creation date and copyright date will be filled in automatically by CodeSmith Generator whenever the template is executed. But there are
other parts of this file that can't be determined automatically by CodeSmith Generator , such as the assembly title and assembly description. For
that sort of variable data, the solution is to prompt the user at runtime, using CodeSmith Generator properties.

Next: Adding a Template Property
Adding a Template Property

CodeSmith Generator uses property directives to define the metadata for a template. You need to add one property directive to the template for
each piece of information that you want to collect from the user when the code is generated. Here are the property directives we'll need for our
Assemblylnfo.cst template:

<%@ Property Name="Author" Type="System String" Description="Lead author of the project." %
<% Property Nane="Title" Type="System String" Description="Title of the project." %

<% Property Nane="Description" Type="System String" Description="Description of the project." %
<%@ Property Name="Configuration" Type="System String" Default="Debug" Description="FProject
configuration." %

<%@ Property Name="Conpany" Type="System String" Default="Megaltilities, Inc." %

<%@ Property Name="Product" Type="System String" Description="Product Nane." %

<%@ Pr operty Name="Version" Type="System String" Default="1.0.*" Description=".NET assenbly
version." %

<% Property Nane="Fil eVersion" Type="System String" Default="1.0" Description="Wn32 file
version." %

Each of these properties has a name (which we'll use to refer to the property in scripting code), and a type (in this case, they're all strings). Some
of the properties also have default values, although, as you can see, you're not required to supply a default value for a property. Most of the
properties also have a description. When the user selects a property in the template's property sheet, CodeSmith Generator displays the
description to help them enter the proper data.

The next step is to make the connection between these properties and the spots in the template where we want to output their values.

Next: Using Properties in the Template

Using Properties in the Template

To insert the value of a property in the generated output from the template, use the same <%= and %> syntax that you used with calculated
fields, but this time use the name of the property for CodeSmith Generator to evaluate. Here's our final template:

: <% CodeTenpl at e Language="C#" Tar get Language="C#" Description="Create an Assenblylnfo.cs file." % :
H <% Property Nane="Aut hor" Type="System String" Description="Lead author of the project." % H
: <% Property Nane="Title" Type="System String" Description="Title of the project." % !
i <%@ Property Name="Description" Type="System String" Description="Description of the project." % i
<%@ Property Name="Configuration" Type="System String" Default="Debug" Description="FProject
configuration." %
i <%@ Pr operty Name="Conpany" Type="System String" Default="Megaltilities, Inc." % i
<%@ Property Name="Product"” Type="System String" Description="Product Nane." %
i <% Property Nane="Version" Type="System String" Default="1.0.*" Description=".NET assenbly i
i version." % i
i <u@Property Name="FileVersion" Type="System String" Default="1.0" Description="Wn32 file :
: version." % :
; usi ng System Refl ection; !
! usi ng System Runti nme. Conpi | er Servi ces; !
o :
/1 Created: <% DateTine. Now. ToLongDateString() %
{ /] Author: <% Author %
Y Z
| [assenbly: AssenmblyTitle("<% Title %")] f
i [assenbly: AssenmblyDescription("<% Description %")]
: [assenbly: Assenbl yConfiguration("<% Configuration %")] :
i [assenbly: Assenbl yConmpany("<% Conmpany %")] i
i [assenbly: Assembl yProduct (" <% Product %")] i
: [assenbly: Assenbl yCopyri ght (" Copyright (c) <% DateTi me. Now. Year. ToString() % <% Conpany %")] :
: [assenbly: AssenblyCulture("")] :
: [assenbly: Assenbl yVersion("<% Version %")] :
i [assenbly: Assenbl yFil eVersion("<% Fil eVersion %")] i
[assenbly: Assenbl yDel aySi gn(true)]

Note that a single property (such as Company) can appear at multiple places in the template.
ﬂl You can download the above template by clicking here

By now the template might look a good deal more complicated to you than the original file. But remember: you only have to write the template
once. Then you just use it whenever you need a new file. The investment in time of adding property directives and other dynamic content will be
repaid very quickly as you use the template.

Next: Compiling the Template and Generating Code
Compiling the Template and Generating Code

At this point, the template is ready to use. Save the file, and then double-click it in Windows Explorer. This will open the template's property sheet.
Fill in values for the template's properties and click the '‘Generate' button to build a new AssemblyInfo.cs file instantly:

Assemblylnfo.cs - Assemblylnfo.cst Cutput = & Y Assemblylnfo.cst - CodeSmith Gene...lil_l-s-:—hJ

HSave to File —)'_1E,0p3r to Clipboard -

using System.Reflection; f 4

using System.Runtime.CompilerServices; . -
y gy i ’ Author Blake Miemyjshi
// Created: Friday, December 1, 1973 Company MegaUtilities, Inc.
/¢ Author: Blake Niemyjski Configuration Retail

/" , . Description Helps manage data in Isolatd
[assembly: AssemblyTitle("User storage utility")]

[assembly: AssemblyDescription("Helps manage data in Isol FileVersion 1.0

[assembly: AssemblyConfiguration("Retail™)] Product StorageScan
[assembly: AssemblyCompany("Megalltilities, Inc.™}] Title User storage utility
[assembly: AssemblyProduct("StorageScan”)] .

[assembly: AssemblyCopyright("Copyright (c) 20811 MegaUtil Version 1.0

[assembly: AssemblyCulture("")]

[assembly: AssemblyVersion("1.8.%")] Misc

[assembly: AssemblyFileversion("1.8")] {No description)

[assembly: AssemblyDelaysign(truel]

: | ’ .
Ready Ln11 Col 43

There! Wasn't that easier than editing yet another file that Visual Studio didn't build to your standards?

We chose this example to be a simple "Hello World" type template. How much time it would save you depends on how many new projects you
create, of course. But this same technique - starting with the output you want to build, identifying the static content, making the content dynamic,
and adding properties for the dynamic content - works with a wide range of code. You can build code for remoting and Web services, data access
layers, standard user interfaces, and anything else you can imagine. CodeSmith Generator lets you replace repetitive hand-coding with code
generation. That's a powerful productivity booster that you'll wonder how you ever lived without.

Write a Template with Database Metadata

One of the key uses for code generation is to build code based on database schema. CodeSmith Generator enables this scenario through the use
of the SchemaExplorer assembly, which provides types for working directly with SQL Server or ADO data as well as designers that can be used
to access those types from CodeSmith Generator. In this tutorial, you'll see how you can use the information available through SchemaExplorer,
together with scripting code, to make short work of building a complex T-SQL script.

Next: HTTP Endpoints in SQL Server
More information:

Using SchemaExplorer
HTTP Endpoints in SQL Server 2005

Among the many new features in SQL Server 2005 is the ability to create HTTP endpoints by running T-SQL code. HTTP endpoints have several
uses, including setting up SQL Service Broker connections and database mirroring over TCP/IP, but the one we'll be concerned with here is that
HTTP endpoints make it easy to build Web services that return SQL Server data. In fact, if your copy of SQL Server 2005 is running on Windows
Server 2003, you don't even need to have IIS installed to create a Web service that returns SQL Server data. A stored procedure coupled with a
CREATE ENDPOINT statement will do the trick.

As with many of the other advanced parts of T-SQL, though, the CREATE ENDPOINT statement has a good many optional clauses and a lot of
complexity. If you're going to need it more than once or twice, that offers an ideal opening for code generation. Rather than deal with that
complexity all the time, figure it out once and embed your knowledge in a CodeSmith template. To begin with, you'll need an example of the SQL
that you want to create.

Next: The Desired SQL Statements
The Desired SQL Statements

We're going to create an HTTP endpoint that returns all of the data from a particular table. Because HTTP endpoints can only return information
from stored procedures or functions, this means we'll actually have to build two SQL statements: one to create a stored procedure, and one to
create the endpoint itself. As usual, the easiest way to build a CodeSmith template is to start with a copy of the output that you want to produce. In
this case, here are the SQL statements to build an HTTP endpoint based on the Person.AddressType table in the AdventureWorks sample
database:

CREATE PROC dbo.PersonAddressTypeProc
AS
SELECT

AddressTypelD,
Name,
rowguid,
ModifiedDate
FROM
Person.AddressType
GO
>CREATE ENDPOINT GetAddressType
STATE = STARTED
AS HTTP
(
PATH ='/AddressType',
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR),
SITE = 'localhost'

)
FOR SOAP

WEBMETHOD 'AddressTypelList'
(NAME="AdventureWorks.dbo.PersonAddressTypeProc'),

BATCHES = DISABLED,

WSDL = DEFAULT,

DATABASE = 'AdventureWorks',

NAMESPACE = 'http://AdventureWorks/AddressType'

)
GO

Now that we understand where we're headed, we can start the journey. This time, we'll use CodeSmith Generator as our tool, to get a sense of
the support that it offers for quickly writing templates.We've highlighted two types of information in the statements above. The red highlights show
parts of the SQL statements that the user can choose from a small list of possibilities. The green highlights show information that CodeSmith
Generator can determine from the SQL Server database after the user specifies a database table. The rest of the template will just be static text.

Next: Creating the Template in CodeSmith Generator
Looking at the SQL

You don't really need to understand the ins and outs of the CREATE ENDPOINT statement to follow along with this tutorial, but you might like to
know what's going on here anyhow. Here are a few notes on the various clauses in this SQL statement:

® The STATE clause specifies the initial state of the endpoint. It can be started, stopped (listening but returning errors to clients) or disabled
(not evening listening for requests)

® The AS HTTP clause specifies the transport protocol to use. You can also specify AS TCP here.

®* The PATH clause specifies the URL on the server that clients will use to reach this Web service.

® The AUTHENTICATION clause specifies how clients will authenticate themselves to the SQL Server: BASIC, DIGEST, NTLM,
KERBEROS, or INTEGRATED.

® The PORTS clause specifies whether the service will listen on the CLEAR or SSL ports, or both (other clauses, not shown here, let you

specify non-standard port numbers)

The SITE clause lets you specify a hostname for the computer that will respond to requests.

The FOR SOAP clause states that this endpoint will respond to SOAP messages.

The WEBMETHOD clause defines a Web method, mapping a method name to the name of a stored procedure

The BATCHES clause specifies that this endpoint won't process arbitrary SQL statements.

The WSDL clause specifies that it will provide WSDL support.

The DATABASE clause specifies the database that contains the data.

The NAMESPACE clause specifies the XML namespace for the messages.

Creating the Template in the Generator Template Editor
This time, we'll use the Generator Template Editor to create the template. This will help get you familiar with the Generator Template Editor as

well as see how fast it can speed up template development. To get started, launch Visual Studio and select File > New > File from the Visual
Studio menu bar.

lﬂ You can also open a new or existing Visual Studio Project and select Add new item from the Solution Explorer.

This will open the Visual Studio New File Wizard. Next, you will want to select CodeSmith Generator under the General Installed Templates node.
Doing this will only show you the available CodeSmith Generator Iltem Templates.

New File molil X
Installed Templates Sort by: [D‘efault Search Installed Templates P |
4 General
Type: G |
TR B i%l Generator Project General ype enerla
: A template with only a CodeTemplate
Performance directive
Web Generator Map General
Visual C++
Script i&% Generator Template (Csharp) General
i&% Generator Template (Visual Basic) General
i&% Generator Template (J5cript) General
i&% Generator Starter Template (CSharp) General
ﬂ'% Generator Starter Template (Visual Basic) General
ﬁ‘% Generator Starter Template (J5cript) General
ﬂ‘% Generator Table Template (CSharp) General
i&% Generator Table Template (Visual Basic) General
——

We are wanting to create a new Visual Basic Generator Template so we will choose the item above by double clicking on the selected item or
clicking the Open button.

This will create a new template with some boiler plate code in it to remind you how the various parts of a CodeSmith Generator template fit
together. Start by modifying the CodeTemplate directive:

A
~
®
8
o
@
_|
[}
2
=4
@
i
QD
>
«Q
c
QD
«Q
(]
i
_‘
QO
»
«Q
o
=
QD
>
«Q
c
QD
«Q
@
i
_|
:
ol
¥
2]
o
9
xe]
S
o
S
1L
Q
@
2
[}
QO
>
3
T
m
>
o
o
=3
=
¥

The TargetLanguage attribute is used to determine how to syntax highlight the static content of a template. The Description attribute is used to
provide a tooltip for the template.

Next, replace the rest of the sample template code with the T-SQL that we want to generate. Now we've got the starting point: a template that
turns out completely static SQL.

: <% CodeTenpl at e Language="VB" Tar get Language="T-SQL" Description="Create an HTTP Endpoint." % :
H CREATE PRCC dbo. Per sonAddr essTypePr oc !
S i
i SELECT i
Addr essTypel D,
i Narre, i
i rowgui d, i
f Modi f i edDat e f
H FROM H
i Per son. Addr essType i
e ;
! CREATE ENDPOI NT Get Addr essType i
! STATE = STARTED !
. AS HTTP 5
: (:
PATH = '/ AddressType',
; AUTHENTI CATI ON = (| NTEGRATED) , ;
; PORTS = (CLEAR), ;

SI TE = 'l ocal host'
)
FOR SQAP
(
WEBMETHOD ' Addr essTypelLi st
(NAVE=" Advent ur eWor ks. dbo. Per sonAddr essTypeProc'),
BATCHES = DI SABLED,
WSDL = DEFAULT,
DATABASE = ' Advent ur eWrks',
NAMVESPACE = ' http://Advent ur eWor ks/ Addr essType'
)
O

Of course, you don't want a static template. The next step is to start making the content dynamic.

Next: Setting up Enumerated Properties
Setting up Enumerated Properties

Several of the pieces of information that we want to collect from the user have a limited number of acceptable choices. For example, the state of
the endpoint can only be STARTED, STOPPED, or DISABLED; anything else will lead to a T-SQL error. Rather than prompting the user for
freeform input (and running the risk of having them type an unacceptable value), it's much more sensible to offer a list of just the acceptable
choices. Fortunately, you can do this by defining an enumerated property.

To set up an enumerated property, you need to define a type that only allows the values you want. You can do this by creating an enumeration.
Start by moving to the end of the template and start typing <script which will show you an IntelliPrompt and allow you to autocomplete the script
block.

-~

00 CAUsers\BLAKEN~1\AppData\Local\Temp\Template2.cst* - Microsoft Visual .22 o) i)

File Edit View Project Build Debug Teamn Data Tools VisualSWN Architecture
Test ReSharper Analyze Generator Window Help

b Generate _

ChUsersh BLAKEM~...emph Termplated.cst™

“i% vs9372_cst -
(MAME="AdventureWorks.dbo.PersonAddressTypeProc’

BATCHES = DISAEBLED,

Ws5DL = DEFAULT,

DATABASE = 'Adventurelorks',

MAMESPACE = "http://AdventureWorks/AddressType

(%5 I

[=1]

1R10|dx3 23e|dwa | BF

2
2
2
27
2
2

o]
@ oud ea

Ready

If you press the tab button or click on the script IntelliPrompt (or any IntelliPrompt) which is shown in the above image, the
action will be autocompleted. In this case the script block will be created with an ending script tag.

After the script block has been created, lets create the new enumeration type:

<script runat="tenplate">
Publ i ¢ Enum St at eEnum
STARTED
STOPPED
DI SABLED
End Enum
</scri pt>

<% Property Nane="Initial State" Type="StateEnunt Category="0Options" Default="STARTED"
Description="The initial state of the Wb service." %

There's one more piece that you need to add to make it all work, though. Under the covers, .NET treats enumerations as integers, but you want to
insert literal strings in the generated code. To make the translation, you'll also need to add a helper function inside of the script block:

Public Function GetState (ByVal State As StateEnum As String

End

Sel ect Case State
Case Stat eEnum STARTED
Cet State = " STARTED'
Case St at eEnum STOPPED
Cet State = " STOPPED'
Case Stat eEnum DI SABLED
Cet State = "Dl SABLED'
End Sel ect
Function

Having done this, you can get the string corresponding to the user's choice of InitialState property by inserting <%= GetState(InitialState) %>
anywhere in the template. After adding enumerations, properties, and helper functions for the authentication and port properties, here's the

current state of our template:

<%@ CodeTenpl at e Language="VB" Tar get Language="T- SQL" Descripti on="Create an HTTP Endpoint." %
<%@ Property Name="Initial State" Type="StateEnuni’ Category="0ptions"

Description="The initial state of the Wb service." %

<% Property Nane="Aut hentication" Type="Authenticati onEnuni’ Category="0ptions"

Def aul t =" | NTEGRATED" Descri pti on="Authentication nethod." %

<%@ Property Name="Port" Type="PortsEnunt Category="0ptions"
use.

"%

Def aul t =" STARTED"

Def aul t =" CLEAR"' Description="Port to

CREATE PROC dbo. Per sonAddr essTypePr oc

AS

GO

SELECT

Addr essTypel D,
Nare,

rowgui d,

Modi fi edDat e

FROM

Per son. Addr essType

CREATE ENDPO NT Get Addr essType

STATE = <% GCetState(lnitial State) %

AS HTTP

(

PATH = '/ Addr essType',

AUTHENTI CATI ON = (<% GCet Aut henti cati on(Aut hentication) %),
PORTS = (<% GCetPort(Port) %),

SITE = 'l ocal host"

SOAP

WEBMETHOD ' Addr essTypelLi st
(NAMVE=" Advent ur eWor ks. dbo. Per sonAddr essTypeProc'),
BATCHES = DI SABLED,
WEDL = DEFAULT,
DATABASE = ' Advent ur eWorks',
NAVESPACE = ' http://Advent ur eWor ks/ Addr essType'

<script runat="tenplate">
Publ i ¢ Enum St at eEnum
STARTED
STOPPED
DI SABLED
End Enum

Publ i ¢ Enum Aut henti cati onEnum
BASI C
DI GEST
NTLM
KERBERCS
| NTEGRATED
End Enum

Publ i ¢ Enum Port sEnum
CLEAR
SSL

End Enum

Sel ect Case State
Case Stat eEnum STARTED
Cet State = " STARTED"
Case Stat eEnum STOPPED
Cet State = " STOPPED'
Case St at eEnum DI SABLED
Cet State = "Dl SABLED'
End Sel ect
End Function

Publ i c Function GetAuthentication (ByVval
Sel ect Case Authentication
Case Aut henticati onEnum BASI C
Get Aut henti cati on = "BASIC'
Case Aut henticati onEnum DI GEST

Case Aut henticati onEnum NTLM
CGet Aut henti cati on = "NTLM

End Sel ect
End Function

Sel ect Case Port
Case PortsEnum CLEAR
Get Port = "CLEAR'
Case Port sEnum SSL
Get Port = "SSL"
End Sel ect
End Function
</script>

CGet Aut henti cati on = " DI GEST"

Case Aut henticati onEnum KERBEROS
Get Aut henti cati on = " KERBEROS"
Case Aut henticati onEnum | NTEGRATED
Get Aut henti cati on = " | NTEGRATED'

Public Function GetState (ByVal State As StateEnun) As String

Aut hentication As AuthenticationEnum) As String

Public Function GetPort (ByVal Port as PortsEnun) As String

So far, so good. But there's still one thing missing: a connection to the database. We'll tackle that next.

Don't forget to save your template by clicking on the Save icon or selecting File -> Save from the menu located at the top of the

Generator Template Editor.

Next: Setting up a SQL Property

Setting up a SQL Property

In order to generate code based on a database table, the template has to somehow know about the database table. This means supplying
metadata through a property that refers to the table. Fortunately, CodeSmith Generator includes the SchemaExplorer library, which contains a
rich set of types designed specifically for interacting with databases. One of these types, TableSchema, allows the user to pick a table from a
database. You can then use the object model in the SchemaExplorer library to retrieve just about any information you need about the table and
the database. Here's the Property directive that we need:

: <%@ Property Name="Sour ceTabl e" Type="SchenmaExpl or er. Tabl eSchema" Cat egory="_Cont ext" :
: Description="Table that the Wb service will access." % :

CodeSmith Generator itself doesn't have any special knowledge of the types in the SchemaExplorer library, so we need to tell it to load the
assembly containing the library. It's also useful to import the SchemaExplorer namespace to keep the amount of typing we have to do to a
minimum:

: <%@ Assenbl y Name="SchemaExpl orer" % :
H <% | nport Nanespace="SchenmaExpl orer" % H

When the user selects a table with SchemaExplorer, the TableSchema object will be populated and returned to CodeSmith Generator. For the
most part, this particular template can be filled out just by retrieving the names of the table, the table's owner, and the database name from this
object. All of those are easily available by navigating around the SchemaExplorer object model:

<% Sour ceTabl e. Nane %
<% Sour ceTabl e. Omer %
<% Sour ceTabl e. Dat abase. Nane %

Substituting those expressions in appropriate places will get you most of the way through writing this particular template. But there's still one task
left that requires a bit of coding: building the list of column names for the stored procedure.

Next: Writing the Database Code
Writing the Database Code

The trickiest part of writing this particular template is retrieving the list of column names for the stored procedure definition. Those, too, are
available from SchemaExplorer. The TableSchema object contains a Columns collection, which you can iterate through in code. You can place
scripting code directly in your template by enclosing it within <% and %> tokens. Here's the code we need to build the list of columns, complete
with appropriate commas:

<% For i As Integer = 0 To SourceTabl e. Col ums. Count -1 % H
<% Sour ceTabl e. Col ums(i).Name %<% If i < SourceTabl e. Col ums. Count - 1 Then %, <% End If % :
<% Next % §

Note the difference here between code to execute (surrounded by <% %> tokens), expressions to evaluate (surrounded by <%= %> tokens) and
static content to copy to the output (not surrounded at all). You may find keeping all this straight one of the more confusing aspects of working
with CodeSmith Generator at first.

With all of the pieces in place, here's the final template:

<% CodeTenpl at e Language="VB" Tar get Language="T- SQL" Debug="True" Description="Create an HTTP :
Endpoi nt." % :
<% Property Nane="Initial State" Type="StateEnunt Category="0Options" Default="STARTED" !
Description="The initial state of the Wb service." % i
<%@ Property Name="Aut hentication" Type="AuthenticationEnunf Category="0ptions"
Def aul t =" | NTEGRATED' Descri pti on="Aut henticati on nethod." %
<%@ Property Name="Port" Type="PortsEnuni Category="0Options" Default="CLEAR' Description="Port to i
use." %
<% Property Nane="SourceTabl e" Type="SchemaExpl orer. Tabl eSchema" Cat egory="Cont ext " i
Description="Table that the Wb service will access." % i
<%@ Assenbl y Name="SchemaExpl orer" % :
<% | nport Nanespace="SchenmaExpl orer" % :

http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/8dc7a3fa-7b86-bf9a-409c-e453aa09f681.htm

CREATE PRCC dbo. <% Sour ceTabl e. Omer %<% Sour ceTabl e. Nane %Proc

AS
SELECT
<% For i As Integer = 0 To SourceTabl e. Col ums. Count -1 %
<% Sour ceTabl e. Col utms(i). Nane %<% If i < SourceTabl e. Col ums. Count - 1 Then %, <% End |f
%
<% Next %
FROM
<% SourceTabl e. Nane %
G0

! CREATE ENDPOI NT Get <% Sour ceTabl e. Name % :
i STATE = <% GetState(lnitial State) % i
i AS HTTP i
o :
! PATH = '/ <% Sour ceTabl e. Nane %', !
i AUTHENTI CATI ON = (<% Get Aut henti cati on(Aut henti cation) %), i
; PORTS = (<% GetPort(Port) %), ;
SITE = 'l ocal host"'

)
FOR SCAP

(

WEBMETHOD ' <% Sour ceTabl e. Nane %Li st

(NAMVE=' <%= Sour ceTabl e. Dat abase. Nane %. dbo. <% Sour ceTabl e. Omer %<% Sour ceTabl e. Nane

%Proc'),

BATCHES = DI SABLED,

WSDL = DEFAULT,

DATABASE = ' <% Sour ceTabl e. Dat abase. Nane %',

NAMVESPACE = 'http:// <% SourceTabl e. Dat abase. Nane %/ <% Sour ceTabl e. Name %'

<script runat="tenplate">
Publ i ¢ Enum St at eEnum
STARTED
STOPPED
DI SABLED
End Enum
Publ i ¢ Enum Aut henti cati onEnum
BASI C
DI GEST
NTLM
KERBEROS
| NTEGRATED
End Enum
Publ i ¢ Enum Port sEnum
CLEAR
SSL
End Enum

Public Function CetState (ByVal State As StateEnun) As String
Sel ect Case State
Case St at eEnum STARTED
Get State = " STARTED'
Case Stat eEnum STOPPED
Cet State = " STOPPED"
Case Stat eEnum DI SABLED
Cet State = "Dl SABLED'
End Sel ect
End Function

Public Function CetAuthentication (ByVal Authentication As AuthenticationEnum) As String
Sel ect Case Authentication
Case Aut henticati onEnum BASI C
Get Aut henti cati on = "BASIC'
Case Aut henticati onEnum DI GEST
Get Aut henti cati on = "Dl GEST"
Case Aut henticati onEnum NTLM
Cet Aut henti cation = "NTLM
Case Aut henticati onEnum KERBEROS
Cet Aut henti cati on = " KERBEROS"
Case Aut henticati onEnum | NTEGRATED
Get Aut henti cati on = "I NTEGRATED'
End Sel ect
End Function
Public Function GetPort (ByVal Port as PortsEnunm) As String
Sel ect Case Port
Case PortsEnum CLEAR
Get Port = "CLEAR'
Case PortsEnum SSL
GetPort = "SSL"
End Sel ect
End Function
</script>

lﬂ Click here to download the completed template.

Next: Testing the Final Result
More Information:
SchemaExplorer
Testing the Final Result

Now that you've written the template, it's easy to test it out. First you'll need to compile the template, so that CodeSmith Generator will display the

right properties in the Properties Window. Click the Build button on the toolbar or press Ctrl+Shift+B to do this. Assuming that there are no errors
in the template, you'll see progress messages in the Output Window:

———————————————— Compile started -----------------
Build conplete -- 0 errors, 0 warnings
---------------------- DONE ---=---=-=--------o-o--

@ If there are any errors in the template, they'll display in the Output Window.

Now you can use the Properties Window to enter values for the template's properties. For the three enumerated properties, you'll find that
CodeSmith Generator provides dropdown lists to choose from.

Properties * X

4
SourceTable Account
4
Authentication INTEGRATED
InitialState _BASIC
O DIGEST
Port NTLM
KERBERO
@ IMNTEGRATED

To set the SourceTable property, click in the property value. CodeSmith Generator will display a builder button with three dots. Click the builder
button to open the Table Picker dialog box.

Table Picker =]

Data Source: [Petshop -] [:]
Tables

Accoot |
Cart
Category
Iventony
ltem
Linetem
Orders
OrderStatus
Product
Profiles
Supplier

Here you can select the data source, and the table within that data source, to use with the template. You can also click the builder button next to
the Data Source combo box to create new data sources. After choosing a table, click the Select button to return to the editor.

i Y
@0 SQLEndPoint.cst - Microsoft Visual Studio (Administrator) o] .]
File Edit View Project Build Debug Team Data Tools VisualSVM Architecture Test ReSharper Analy G t Wind Help

PEH p Generate -

SQL.EndPoint.cst ¢

“# S0L_EndPoint_cst - | # pAuthentication
1| «<¥@ CodeTemplate Language="VB" Targetlanguage="T-5QL" Description="
<%@ Property Name="InitialState" Type="StateEnum" Category="Optiocns
<%@ Property Name="Authentication" Type="AuthenticationEnum” Categc
<%@ Property Name="Port™ Type="PortsEnum" Category="Options" Defaul prions
<%@ Property Name="SourceTable"™ Type="SchemaExplorer.TableSchema" ¢ Authentication INTEGRATED
InitialState STARTED

Port CLEAR

SourceTable Account

yjdig 33eidwia) BS

13lc

<%@ Assembly Name="SchemaExplorer"” ¥»
<%@ Import Mamespace="SchemaExplorer”| %>

R T- - I T RN - TTR)

CREATE PROC dbo.<¥= SourceTable.Owner ¥»<¥= SourceTable.Name ¥»Proc
AS
SELECT
<¥ For 1 As Integer = @ To SourceTable.Columns.Count -1 %>
<¥= SourceTable.Columns(i).MName ¥><¥ If i < SourceTable.Col
<% Mext %>
FROM
<%= SourceTable.Mame %>
GO
CREATE EMNDPOINT Get<¥= SourceTable.Mame ¥>
STATE = <= GetState(InitialState) ¥

When you're done setting properties, click the Generate toolbar button or press F5 to run the template. CodeSmith Generator will generate the
template's output and switch to the Output tab so that you can save or copy the output.

More Information:
SchemaExplorer

Building, Running, and Compiling Templates

Visual Studio Integration

In addition to the standalone user interface Template Explorer, CodeSmith Generator also offers integration with Microsoft Visual Studio. This integration

takes many forms:

Template Explorer

To use Template Explorer from within Visual Studio, select Template Explorer from the Generator menu which is located between the Tools and
Help menu. This will open the Template Explorer tool window. This window can be floating or docked, just like any other Visual Studio tool

window.

File Edit View Project Debug Team Data Tools AMTS Test Analyze Generator Window Help

=] -
* 1 x

- -G Ha | % s @R[- - &5 b [windowsPhone7 Emulator & aEm
P %% % B EEEEREE] - o I8 » Genaate (|} @ d| 3 2 305 2] % F -
TemplateScript.cst X ~ Template Explorer

TemplateScript_cst v| _propertyFromSeript = ™ e

<¥@ CodeTemplate Language="C#" Targetlanguage="C#" Description="Demonstrates the most t—| > L. SQLite

<%@ Property Name="SampleBooleanProperty” Type="System.Boolean” Default="True" Category > StoredProcedures
<%@ Property Name="SampleStringProperty” Type="System.String" Defsult="SampleString" Cz > | TypedDataSet
/f This class generated by CodeSmith on <%= DateTime.Mow.TolLongDateString() %> - Examples
public class SimpleTemplate 3 > @ ASP.NET
{ Full integration within 4), BasicSamples
public SimpleTemplate() : base() . g - . 1 Csh)
{ Visual Studio for executlng 4 ap
templates b CodeSmith101
<% if (SampleBooleanProperty) { %» - > | Includes
> gl CodeBehind
private veid <%= SampleStringProperty %>() » &) CodeBehind.cst.cs
{ > gl MasterTemplate

> <1 Paria
&£l Template Explorer [BE

[/ <%= GetScmething() %>
// Do something
! Properties

<% } %> AlHlﬁ%ﬁzl‘;

m

ehing
ion Explorer

- 1 x

<% if (PropertyFromscript) { ¥»

]« [— —— — L PropertyFromSeript [[]
SampleBooeleanPrope
SampleStringPropert, SampleString

Error List > X
Q 0Emors | 1\ 0 Warnings ‘ (i) 0 Messages

£ - - -
Description File Line Column Project

5 Error List [N

Ready Ln14 Ch27

Template Explorer has the same functionality in Visual Studio that it does as a standalone program.

Template Editor

The Generator Template Editor is now integrated seamlessly into Visual Studio (as pictured above).

completion, documentation capabilities, go-to-definition support and much more.

INS

The editor features rich IntelliSense, auto

21 <X I'-11.-'Method{Strin:%Pr*Dper‘tyj; 5

22 1 ﬁ string TestGoToDefinition_cst String Property
23 My Stnng Property

24 [H<script runat="template™:

25

26 / <summaryx

27 [My String Property

28 | S/ </summary:

29 [Hpublic System.String StringProperty { get; set; }

The Template Editor features rich IntelliSense and auto completion support just like Visual Studio. This allows you to increase productivity
while developing templates.

<% MyMethod(StringPropenti &
b Go To Definition N

<script runst="template">
The Template Editor also features Go-To-Definition support which will take you instantly to the identifier's definition via the Object Browser.

CodeSmith Generator Project Integration

CodeSmith Generator Projects can be used to generate code within your Visual Studio Projects.

Visual Studio Project
Integration:

Have an integrated
CodeSmith Project control
multiple outputs from a
single source template.
Any outputs can

Solution Explorer * B X

| & (2]
; Solution 'VSlntegrationSample' (1 project)
4 |2 VSIntegrationSample
> [=d] Properties
» [+3] References
5 app.config
4 ﬁ BusinessObject.csp

automatlcglly be add_ed to %] Order.cs
your Visual Studio %Y Product.cs
Projects! % Profile.cs
%] Supplier.cs
p L. - G
X, Manage Cutputs - BusinessObject.csp 2
BEFOXIL & &R
Outputs
MName Template
Product .cs [Default Template: businessobject cst’]
Order.cs [Default Template: businessobject .cst’]
Supplier.cs [Default Template: businessobject st
Profile.cs [Default Template: businessobject .cst’]

|| Cancel

ActiveSnippets

ActiveSnippets can be used to generate snippets of code similar to Visual Studio's snippets except with the full power of CodeSmith

Generator templates and the ability to use complex metadata like database schema and XML.

—-lusing System;
using System.Collections.Generic;
using System.Text;

—Inamespace CsharpCodeGeneratorSample

1
- class Sample
1
tp Petshop.dbo.Orders
i
}

Fantastic Snippet Power

You can use an alias for your
ActiveSnipper. Arguments can be
simple and even complex objects
such as a table or xml data as a
template argument.

Type CTRL-E + CTRL-E to expand
the ActiveSnippet.

o

You can easily name your snippets to quickly generate exactly what you want.

-lusing System;
using System.Collections.Generic;
using System.Text;

-Inamespace CsharpCodeGeneratorSample

{

= class Sample

1

private int _orderId;

= public int OrderId

1

get { return _orderId; }
set { _orderId = value; }

h Expanding Active Snippets:
Expand: CTRL-E + CTRL-E

private string userld;
Once expanded you now see the

= public string UserId power of CodeSmith Templates as
1 an Active Snippet and increase your
get { return _userId; } developer productivity exponentially.
set { _userId = value; }
T ’

private System.DateTime _orderDate;

= public System.DateTime OrderDate

1

get { return _orderDate; }
set { _orderDate = value; }

}

Running the snippet is very easy, all you need to do is press CTRL-E twice or select Generator -> Expand ActiveSnippet from the Visual Studio
menu.

Learn More

You can also check out this video tutorial to learn more!

Using Template Explorer

Using Template Explorer covers the below sections:

What is Template Explorer?

The Template Explorer Toolbar
Managing the Folder Tree
Editing Templates

Executing Templates

Working with the Output Window

What is Template Explorer?

The Template Explorer, also known as CodeSmith Generator Explorer, provides an easy interface for organizing and executing CodeSmith
Generator templates. Just as Windows Explorer sorts your files into folders, Template Explorer sorts templates into folders to make it easier to
find the templates that you want to work with.

& CodeSmith Generator Explorer l =NE= éj

= ™ e

4 | CodeSmith Generator Samples *
| ActiveSnippets
» |, Database
) Examples
4 |, Frameworks
a | Csla

m

> L) Common
> 10 CSharp

- | Source

> . VisualBasic

| 7| Master.proj
{@ Quickstart. cst b
& Readme.html

+ 1 MetTiers

» L PUNQO
: PLINGO-EF i

The Template Explorer Toolbar

The Template Explorer Toolbar includes the following buttons:

L,

-

Create a template folder shortcut: Clicking this button will open a Browse for Folder dialog box that lets you select any existing folder on
your computer. Click OK to add a shortcut to the selected folder as a top-level node in Template Explorer. When you install CodeSmith Generator,
Template Explorer is pre-populated with a single shortcut to the Sample Templates folder in your installation.

¢ Toggle Top Most Window Mode: By default, CodeSmith Generator Explorer (which hosts Template Explorer) behaves as a normal
window that can be overlaid by other windows. If you select this button, Template Explorer will float on top of all other windows, remaining
permanently visible even if another window that would otherwise hide it has the focus. This is especially useful when you want to generate code
by dragging and dropping templates from Template Explorer to any application that supports dropping text.

@::

About CodeSmith: This button displays the version and licensing information for your copy of CodeSmith Generator.

Managing the Folder Tree

Folders may contain subfolders, templates, or both. At any time, one node in the folder tree will be selected. The selected node is indicated by a
highlight. In the screenshot below, the CSLA QuickStart template is selected. You can select a node by clicking on it with the mouse.

CodeSmith Generator Explorer l — | (=] |_ﬂh]1

= ™ @

4 | CodeSmith Generator Samples -
) ActiveSnippets
>) Database
» | Examples
4 Frameworks
a4 | Csla

m

» |, Commaon
> CSharp
>} Source
1 VisualBasic
| 7] Master.proj
{% QuickStart. cst
& Readme.html
1) MetTiers
. PLUINQO

: PLINQO-EF i
—

ﬂ You can also move the selection by using the up or down arrow keys, or by typing the first letter of the name of the node.

A folder that can be expanded as indicated by a arrow sign to its left. To expand a folder, click the plus sign, or double-click the folder or its name,
or select the folder and click the right arrow or the plus sign on the numeric keypad. A folder that can be collapsed is indicated by a darkened
arrow sign to its left. To collapse a folder, click the arrow sign, or double-click the folder or its name, or select the folder and click the left arrow or
the minus sign on the numeric keypad.

You can perform a variety of other operations from the CodeSmith Generator Explorer context menus. These menus differ depending on which
node you right-click on.

ﬁ All of your existing Windows Explorer context menu items (E.G., Delete, Rename...) will also be displayed in these context
menu’'s.

lﬂ You can open a template folder in Windows Explorer by right-clicking on a folder and selecting the Open context menu item.

Context Menu for a Folder

Right-clicking on a folder will bring up a shortcut menu with the following choices:

®* New

CodeSmith Generator Template (CSharp): Creates a new template using CSharp as its code-behind language.
CodeSmith Generator Template (Visual Basic): Creates a new template using Visual Basic as its code-behind language.
CodeSmith Generator Project: Creates a new CodeSmith Generator Project file.

CodeSmith Generator map: Creates a new blank CodeSmith Generator Map file.

File: Creates a new empty file. By default the file will have a .txt extension.

Folder: Creates a new sub-folder.

If you are right-clicking on a template folder shortcut (top-level folder in the tree) the following shortcut menu items will also be displayed:

®* Remove Shortcut. Deletes this folder shortcut from CodeSmith Explorer. This does not delete the underlying files from your hard drive.

® Include Subfolders. When checked, CodeSmith Generator Explorer will also display subfolders of the target folder. Otherwise, it will only
display templates in the target folder of the shortcut itself.

Context Menu for a Template

Right-clicking on a template brings up a shortcut menu with the following choices:

® Execute. Execute the template.
® Edit. Open the template for editing.

Editing Templates

To edit a template, right-click the template in Template Explorer or Window Explorer and select Edit.

Execute
Edit
M Select Left File for Compare
Open with L

TortoiseGit ¥
Tortoise5VM 4

Add to archive...
Add to "MapSamplerar”
Compress and email...

i i i R

Compress to "MapSamplerar” and email

P - -
‘f}v CodeSmith Generator Explore Restore previous versions
& o @ Send to *
4 | CodeSmith Generator Sam Cut
s | ActiveSnippets i
> | |y Database
4 | Exarmnples Create shortcut
> Lo ASPIMET Delete
> BasicSamples
Rename
4 | Maps
MapSample.cs Properties
#| MapSample.c
> Merge
> Photo Gallery
> 0y Kml
> Frameworks
> Other
> My Temnplates

This will open the template in the default template editor. Template Explorer will use an existing editor session if possible, otherwise it will launch
a new editor session.

Executing Templates

To execute a template from Template Explorer, double-click the template, or right-click the template and select Execute. You can also drag the
template from Template Explorer and drop it on any application that supports drag-and-drop to generate code at the location where you dropped
the template. Any of these actions will open the template's property sheet.

’
GL, DbSnapshot.cst - CodeSmith Generator [Z=2010

: ™ | Fulter o)

SourceDatabase
4 2

ExecuteScriptsOnTarget [

TargetDatabase
4 2, Qutput
CleanDirectories O
CutputDirectory D:\Documents\CodeSmith (
ScriptTableData
4 Output
CutputFile
SourceDatabase

Database that the documentation should be based on.

N

Generate

The template's property sheet shows you all of the properties that you can set for this template. Properties can be required or optional. You need
to supply values for all required properties before CodeSmith Generator can generate the code for you. Depending on how a property is defined in
the template, you may be able to type in an arbitrary value, select a value from a predefined list, or choose a value by navigating to a dialog box
from a builder button within the property sheet. Properties may also have default values. As you select each property, a description will appear at
the bottom of the property sheet to tell you more about that property.

SourceDatabase
Database that the documentation should be based an.

Generate

In the screenshot above, the user has selected the SourceDatabase property, and the description indicates that this property specifies the
Database that the documentation will be created for.

SourceDatabaze -

With the SourceDatabase property selected, the right side of the property sheet shows the builder button (with three dots) as shown highlighted in
green. Clicking this button will open a separate dialog box (in this case, a dialog box supplied by CodeSmith Generator's own SchemaExplorer
metadata extension) to help you pick a value for this property.

When you have finished setting properties for the template, you're ready to generate code. To do this, click the Generate button at the bottom of

the template's property sheet. CodeSmith Generator will take the property values that you entered and combine them with the template to create
the code, and display it in an Output Window or output it to a specific directory. In this case the code will be generated to the folder specified in
the OutputDirectory property.

ﬂ Click here to learn about the property sheet toolbar.

Advanced: Using a CodeSmith Generator Project to Execute CodeSmith Templates from Anywhere

Working with the Output Window

Template Explorer will automatically display an Output Window when you click the Generate button. The Output Windows' contents can be
modified at any time which allows you to make changes anytime to the document.

p
1, Assemblylnfo.cs - Assemblylnfo.cst Output E@lﬂ

=l save to File :’j Copy to Clipboard

using System.Reflection;

using System.Runtime.Compilerservices;

i

/i Created: Monday, December 1, lﬁ?j

i Buthor: Blake Niemyjski

i

[assembly: AssemblyTitle("User storage utility™)]

[assembly: AssemblyDescription("Helps manage data in Isolated Storage files.")]
[assembly: AssemblyConfiguration("Retail"}]

[assembly: AssemblyCompany({"Megalltilities, Inc."}]

[assembly: AssemblyProduct{"StorageScan")]

[assembly: AssemblyCopyright("Copyright (c) 2811 MegalUtilities, Inc.")]
[assembly: AszemblyCulture("")]

[assembly: AssemblyVersion{"1.8.%")]

[@ssembly: AssemblyFileVersion("1.8")]

[assembly: AssemblyDelaySign(true)]

| i | -

Ready Ln4 Col 37

The output panel has its own toolbar with two buttons.
Copy to Clipboard: Copies the current document to the Windows clipboard.

IEI Save to File: Opens a Save As dialog box to let you save the current document to a new file on your hard drive.

Using the Template Editor

The Generator Template Editor provides a complete integrated development environment (IDE) for CodeSmith Generator templates. You can use
Generator Template Editor to edit, compile, and run CodeSmith Generator templates. The Generator Template Editor includes features designed
to make building and debugging templates easier.

)

Generator Window Help

-
@@ SimpleTemplate.cst* - Microsoft Visual Studio (Administrator)

File Edit View Project Build Debug Team Data

Pl S | D e Generte |

Tools VisualSVMN Architecture Test ReSharper Analyze

B Output

Toggle Outlining Expansion
Toggle All Qutlining
Stop Outlining

48 SimpleTemplatecsts + Template Explorer - 1X
v’[g SimpleTemplate_cst - |j‘ SampleBooleanProperty e e
1 <¥@ Template Language="C#" TargetlLanguage="C#" Des:ri;tiun:"Demllzl a CodeSmith Generator Samples -
2 <¥@ Property Name="SampleBooleanProperty"” Type="System.Boolean" . ActiveSnippets
3 <¥@ Property Name="SampleStringProperty” Type="System.String" D . Database £
4 // This class generated by CodeSmith on <¥= DateTime.Now.ToLong a Examples
5 public class SimpleTemplate ASP.NET W
6 { 4 BasicSamples
7 public SimpleTemplate() : base() 4 CSharp
8 { CodeSmith101
1: % if (SampleBooleanP t % Includes
e < .1 { am;la eBooleanProper):l) { % @CDdeBehind.r_st
11 private void <%= Samplestri . .
12 { Go To Definition #] CodeBehind.cst.cs -
13 // Do something C
14 I ;
15 }% g HEHE BR e =
= Cut CrieX =
s} ptions
17 Copy Curl+C mpleBooleanProperty
Paste Curl+V mpleStringProperty SampleString

pleBooleanProperty

is a sample boolean property.

Ttem(s) Saved

Collapse te Definitions

The Template Editor offers a superset of the functionality of Template Explorer. When you just want to execute templates and generate code,
you'll find it's faster to use Template Explorer to get your work done. But when you have templates under active development, Template
Editor should be your tool of choice.

This section will cover the following topics:

® Template Editor User Interface

®* Template Editor Features

® Building, Running, and Compiling Templates
® Customizing CodeSmith Generator

Template Editor User Interface

The Generator Template Editor user interface includes a number of separate elements as shown below, each with its own purpose. The following
document will step you through the different elements.

User interface elements

The Template Windows(Template Document, Generated Document), Template Explorer, Properties Window, and Output Window can be docked
to any side of the template documents (shown in green below) or floating. Docked windows can also be set to auto-hide by clicking on the pin
button in the upper right hand side of the window. When you hover the mouse over an auto-hide window, it "slides out" to become fully visible,
covering other user interface elements. Multiple floating windows can be docked to one another.

Generator menu

The Generator menu is located at the top of the Template Editor and is highlighted in light blue. This menu allows you to display additional user
interface elements like Schema Explorer, Template Explorer, Map Editor, manage data sources, ActiveSnippet configuration, about dialog, error
window and much more.

Template Editor toolbar

The Template Editor toolbar is located at the top of the Template Editor and is highlighted in red. This toolbar allows you to quickly generate or
build a template.

Template Documents

Template documents refer to a document window that consists of a specific function. Here is a general overview of the various template document
types:

®* Template document: A template document gives you the ability to edit a template. A template document is highlighted in green below.
Click here to learn more about the template document.

® Generated document: A generated document shows you the generated template content. Click here to learn more about the generated
document.

ruo SimpleTemplate.cst - Microsoft Visual Studio (Administrator) E@ﬂ‘
File Edit View Project Build Debug Teamn Data Tools VisualsVM Architecture Test ReSharper Analyze _Windcm Help
g ey)

(@ SimpleTemplate.cst be ~ Template Explorer

0[3 SimpleTemplate_cst - |ﬁl SampleBooleanProperty vl & ™ @ =
1 <&@ Template Language="C#" TargetlLanguage="C#" Description="Dem— , CodeSmith Generator Samples
<%@ Property Name="SampleBooleanProperty"” Type="System.Boolean" . ActiveSnippets
<¥@ Property Name="SampleStringProperty™ Type="System.String" D ., Database
// This class generated by CodeSmith on <%= DateTime.Now.TolLongl | Examples
public class SimpleTemplate 5 b ASP.NET
{ . BasicSamples
public SimpleTemplate() : base() CSharp
5
1 || CodeSmith101

}% £ 1 1 5 . Includes
< .1 (Samp.) eBoo eanPr‘oper‘t):r) 1 &> (@ CodeBehind.cst
private void <¥= SampleStringProperty %:()

{

@ ou oo el @ L e R

// Do something

OQutput

CodeSmith Generator
———————————————— Compile started -----------------

Build complete -- @ errors, 8 warnings

Template Explorer

Template Explorer is deeply integrated into the Template Editor allowing for quick access to all of your existing templates. You can double click on
a template to edit the template in the Template Editor and much more. The Template Explorer is highlighted above in yellow.

Properties window

The properties window lets you view and edit the property settings for the current template, similar to the property sheet you can get by invoking
Execute from Template Explorer. The properties window is highlighted above in orange.

Output window

The output windowis used by CodeSmith Generator to send status messages to you. The properties window is highlighted above in purple.

Error window

The error window is used by CodeSmith Generator to display template document errors or warnings that occurred while editing or compiling.

Template Editor Toolbar

The Template Editor Toolbar is located at the top of the Template Editor and can be seen below.

b Generate -
ﬂl This toolbar is only shown when a Template Document has focus.

Toolbar Actions

The toolbar contains the following actions:

Build: Clicking this button compiles the current template. The Output window will show the results of the build operation.

ﬂ You can also build a template by pressing F6.

p Generate

Generate: Clicking this button executes the current template, using values from the Properties window together with the template
to create the generated code. The generated code will be displayed in the Output tab once this operation is complete.

ﬂ You can also build a template by pressing F5.

Template Documents

Template documents refer to a document window that consists of a specific function. Template documents allow you to edit CodeSmith
Generator templates, as well as to view the generated code from templates. Here is a general overview of the various template document types:

* Template document: A template document gives you the ability to edit a template. A template document is highlighted in green below.

Click here to learn more about the template document.

® Generated document: A generated document shows you the generated template content. Click here to learn more about the generated

document.

You can have multiple documents open at the same time in the Template Editor. You can switch between documents by clicking on a documents
tab. A documents tab is located at the top of a documents' design surface as highlighted in green below.

-
@0 SimpleTemplate.cst - Microsoft Visual Studio (Administrator)

)

File Edit View Project Build
- (S A : b Generate _

(Ej SimpleTemplate.cst X 2

Debug Team Data

v’[g SimpleTemplate_cst - |f SampleBooleanProperty -

Tools VisualSVMN Architecture Test ReSharper Analyze

“}@SimpleTemp\atE

Generator Window Help

~| =% SimpleTemplate() -

<¥@ Template Language="C#" TargetlLanguage="C#"

2 <¥@ Property Name="SampleBooleanProperty"” Type='
3 <¥@ Property Name="SampleStringProperty” Type="!
4 // This class generated by CodeSmith on <%= Dat:
5 public class SimpleTemplate

5 1

7 public SimpleTemplate() : base()

5 {

¥

1@ <% if (SampleBooleanProperty) { &»

11 private void <%= SampleStringProperty %>()
12 {

13 // Do something

14 H

15 <%}

16}

100 %

2 Epublic class SimpleTemplate

3

4 [public SimpleTemplate() : base()

5 {

6 }

7 E private void SampleString() >
8

9 // Do something L

16 } b

1 // This class generated by CodeSmith off

- 4 nr 2

In the screenshot above, a template document is displayed on the left and a generated document is shown on the right.

Template Document

The template document is the editing surface of the Template Editor. A template document consists of the template source code.

http://docs.codesmithtools.com/display/Generator/The+Output+Tab

ad Si mpleTemplate.cst
;3% SimpleTemplate.cst x

%3 SimpleTemplate_cst - | E SampleBooleanFProperty

21 <%@ Property MName="SampleBooleanProperty"” Type="System.Boolean
<%0 Property Name="SampleStringProperty" Type="System.String"

fu

!/ This class generated by CodeSmith Generator on <= DateTime.N
public class SimpleTemplate
1

public SimpleTemplate() : base()

1

¥

<¥ if (SampleBooleanProperty) { %:

private void <#= SampIEStr"i:EigF‘roper*ty 200

{ | ﬁ string SimpleTemplate_cst SampleStringProperty
f{ Do somethimg

5
6
7
8
9
a

¥
<% T %>

Generated Document

The generated document displays the generated code produced by combining the template with the property values entered by the user in the
Properties window. The generated document will be displayed after you generate a template.

& si mpleTemplate.cs

] SimpleTemplate.cs x

“I% SimpleTemplate 'I = SampleString () -
1} // This class generated by CodeSmith Generator |
2 [Hpublic class SimpleTemplate a
3 |¢
4 [= public SimpleTemplate() : base()
5 { £
E }
7 = private woid SampleString()
8 {
9 /! Do snmethind
10 }
11§ | } :
W00% = 4| m ,

ﬂ The generated document will not be shown if the templates OutputType CodeTemplate Directive attribute value is set to None.

The Properties Window

The Properties window lets you view and edit the property settings for the current template. It is similar to the property sheet you can get by
invoking Execute from Template Explorer.

ﬂ You can navigate to the Properties window by selecting Properties Window from the View menu or by pressing F4.

Properties

4 s
ClassName Collection
ItemType
IternValueType]
d =
DeepCopy [
DeepCopyltem Clone
4
Keylndexer (]
KeyMame
KeyType
4

Toclid oblawa crmacee [T

Before you can generate code from a template, you must supply values for all of the non-optional properties in the Properties window.

One of the features of CodeSmith Generator is the ability to cache property set values for each template you open. This feature gives the ability to
persist property set values from one Generator session to the next for that particular template. This includes when you change a template,
recompile a template, close and re-open Generator.

You can toggle the availability of Property Persistence by using the Enable Property Persistence checkbox in the Options
dialog.

) Click here to learn how to set property values.

Property Sheet Toolbar

The Template Explorer property sheet toolbar includes the following buttons:

- Categorize: By default, the properties in the property sheet are sorted by categories. If you'd prefer them in a single alphabetical list, click
the Alphabetic toolbar button.

A
Zl Alphabetical: Sorts the properties in the property sheet alphabetically by property name.
IEI Save Property Set: Opens a Save As dialog box to let you save the settings from the property sheet as a CodeSmith Generator Project file.

Open Property Set: Opens a File Open dialog box to let you select an existing CodeSmith Generator Project file. The settings from the XML
file will be loaded into the property sheet.

Copy Property Set: Copies the settings from the property sheet into a CodeSmith Generator Project and to the Windows clipboard as an

XML file. CodeSmith Project files can be used as input to the CodeSmith Generator Console application.

Paste Property Set: Restores the property values from the CodeSmith Generator Project file (the Xml file from Copy Property Set) stored in
the Windows clipboard.

-
Refresh Property Values: Refreshes the values of the property sheet and also clears any cached values like cached database information.

IE' Reset Properties to Default: Resets the property values to the default values.

ilter e

Filter: You can also Filter the properties that are displayed in the property sheet by typing in the name of the property
or properties you are looking for. For example, if you are looking for a property that starts with 'a’ or contains the letter 'a’, just type 'a’ into this filter
box.

Li]

Py
To clear any cached database schema information press the Refresh Property Values button at the top of the property
sheet.

The Output Window

The Output window is used by CodeSmith Generator to send status messages to you.

Output

Show output from: | CodeSmith Generator '| | _;' | \‘._)l = | =% | =
-------------- Generating Template ------=-==-=---- »
Build complete -- @ errors, @ warnings

Generation succeeded

‘!’t.i TGN =] Output

The combo box at the top of the Output window can be used to switch between the Build pane and the Debug pane.

The Error Window

The error window allows you to view any template document errors or warnings that occurred while editing or compiling.

' ™y
oo Editor.Tests - Microsoft Visual Studio (Administrator) [E=EE

File Edit View Project Build Debug Team Data Tools VisualSVMN Architecture Test ReSharper Analyze Generator Window Help
-.;Ij'l_]'lﬁlgﬁ| : b Generate _

(@ MultipleCodeTemplates.cst =

VB MultipleCodeTemplates_cst - |f SourceTable -

11 public <%= column.SystemType.FullName %> <%= column.Name.ToCSharpIdentifier().ToPascalCase()} %>|?'
12 <% } >

13}

14 D

15 <¥%@ Template Language="VB" TargetlLanguage="Text" Debug="False" %>
16 <&@ Property Name="SourceTable” Type="SchemaExplorer.TableSchema” Category="DataSource” Optiocnal="F:
17 <¥%@ Assembly Name="SchemaExplorer™ %>

|:| 4 | = o n I FI'I‘Ir - | 2
Error List * 1 x
@ 31 Errors | 1\ 0 Warnings | i) 0 Messages

Description File ‘ Line Column Il
u Template already contains a directive named "SourceTable". MultipleCodeTemplates.cst _- U

@ 2 Template content can't appear before template directives. MultipleCodeTemplates.cst 7 0
@ 3 Template content can't appear before template directives, MultipleCodeTemplates.cst 7 7
@ 4 Template expressions can't appear before template directives, MultipleCodeTernplates.cst 7 13

The image above contains a template document and the error window. The error window contains errors for the MultipleCodeTemplates.cst
template document. The error window can show errors, warnings or messages.

On the first line of the error window, there is an error for a duplicate property directive declaration. The line specifies the file that the error resides
in as well as the line and column of the error. You can double-click any where on this line to jump you to the place of the error.
1

17 | Template already contains a directive named "SourceTable". l

A

[=3]

<%@ Property Name="SourceTable" Type="EchemaExplorer.TableSchema”

The Template Editor also helps you identify errors by placing a red squiggles under each error. You can hover over the squiggle to bring up the
error information as shown above.

Template Editor Features

Template Editor is a modern, full-featured IDE with advanced capabilities that rival those of Visual Studio .NET. Features of the editor include:

Themes and Syntax Highlighting
Template Navigation

Bracket highlighting
Documentation Comment Editing
Find and Replace

Incremental search

Keyboard shortcuts

Line Modification Markers
Outlining

Statement completion

Tab groups

Bracket Highlighting

When the cursor is in front of a bracket, the editor will outline both that bracket and the corresponding open or close bracket:

internasal Hashtable InnerHash
i
et
i
return innerHash;

This works with parentheses, square brackets, and curly braces.

ﬂ You can move the cursor quickly to the corresponding bracket by typing Ctrl+].

Documentation Comment Editing
The Template Editor allows you to easily document your template code. As an added benefit, the documentation you provide will show up in

Statement Completion and Quick Info. This will allow you to quickly see what a method, property, or argument does without inspecting the code,
therefore saving you valuable time.

Example

In this example we are going to assume that we are editing an existing template that already has some methods defined. We will come across a
method that we don't know what its responsibility is. We will then investigate and add some documentation for future reference.

Inspecting the code
We are inspecting existing code and have no idea what the WriteToLog<T> method does (as shown in the image below). We decide to hover

over the method to see any comments via Quick Info.

<% WriteTolog<string>(items); %>

| iy void Template1_cst Wiite ToLog(lEnumerable<string= tems)

[N B - B

1

=

With the lack of documentation we have no idea what the method does. So we do a Go To Definition on WriteToLog and inspect the code.

Adding documentation

Now that we know what the method does, let's add some documentation so anyone using the templates in the future will know what this method
does.

When typing /// (CSharp) or' ' "' (Visual Basic) immediately before a type or member, stub documentation comments will automatically be
inserted.

16

17 [|[Hpublic static void WriteToLog<T»(System.Collections.Generic.IEnumerable<T> items) {

16 B f <summary >

17

18 [</summary >

19 f <typeparam name="T":</typeparam>
e / <param name="1items":</param:

Ba ka

—lpublic static void WriteToLog<T»({System.Collections.Generic.IEnumerable<T> items) {

We will now fill out the summary section of the documentation, so others will know what this method does.

As Enter is pressed within a documentation comment, / // (C#)or'"' "' (VB) are auto-inserted on the next line for continuation
of the comment.

Now, when we hover over the WriteToLog<T> method we are prompted with a description!

7

2] <% WrifeTolog<string>(items); %>

= i void Template1_cst WnteToLoa(lEnumerable<string= items)
18 Writes the values of the passed in items to disk.
11

Find and Replace

The Find and Replace dialog allows you to quickly find and replace text inside of a template.

Opening the Find and Replace dialog
You can open the Find and Replace dialog by pressing Ctrl+F or Ctrl+H.
Find and Replace Options

The following options are available for

Find and Replace * O X Find what: Enter the text that you wish to find.

— - - - g:ﬂ . -
5& Quick Find “+8 Quick Replace Replace with: Enter the text that you wish to replace the found text.

Find what: Look in: Allows you to configure where you want to search. To search only current
IEnumeral::llel - document, select Current Document from the Look in drop down menu.
Replace with: Find Next: Click this button to find the next match in the file.
ICloneable - Replace: Click this button to replace the next match in the file.
Look in: Replace All: Click this button to replace all matches in the file.
[Current Document - Find Options
E] Find options Match case: To limit your search to an exact case match, check the Match case
- checkbox. Otherwise, text will match regardless of case.

D Match case Match whole word: To limit your search to whole word matches, check the Match

[Match whole word whole word checkbox. Otherwise, text will match in partial words.
[] Search up Search up: To search from the current cursor position to the top of the file, check the
Search up checkbox. Otherwise, the search will be from the current cursor position to
[Use the end of the file.
Regular expressions Use

This options allows you to search by regular expressions or by using a wildcard. See
below for more information.

[Eind Mext l ’ Replace

’ Replace Al] Find using a Regular Expression

To search using regular expressions, check the Use check box and select Regular
Expressions. You can use the following regular expression syntax:

Any single character

* Zero or more

+ One or more

n Beginning of line

$ End of line

\b Word boundary

\s White space

\n Line break

1 Any one character in the set

["] Any one character not in the set

| Or

\ Escape special character

Find using a Wildcard
To search using wildcards, check the Use check box and select Wildcards. You can use the following wildcard syntax:

* Zero or more of any character
? Any one character

Any single digit

1] Any one character in the set

["] Any one character not in the set

Incremental Search

Incremental search can be activated from the Advanced submenu of the Edit menu, or by pressing Ctrl+l (for forward incremental search) or
Ctrl+Shift+l (for backward incremental search). The cursor icon changes to a binocular with an arrow indicating the search direction.

Begin typing the text that you want to search for. As you type, the editor highlights the first occurrence that matches the text. As you continue
typing, the editor moves to the next match and highlights it. If no matches are available, the highlight will stop moving.

During incremental search, the following special keys are active:

Key Meaning

Esc Stop searching

Backspace = Remove the last character from the search string
Ctrl+Shift+l ~ Change the search direction

Ctrl+l Move to the next match

Keyboard Shortcuts

The Template Editor supports the following keyboard shortcuts:

Key Command

Ctrl+Enter Insert blank line above current line
Ctrl+Del Delete next word

Ctrl+Backspace Delete previous word

Ctrl+C, Ctrl+Ins Copy

Ctrl+X, Shift+Del Cut

Ctrl+V, Shift+ins

Ctrl+zZ

Ctrl+Y, Ctrl+Shift+Z

Ctrl+Down

Ctrl+Up

Ctrl+Left

Ctrl+Right

Ctrl+PgUp

Ctrl+PgDn

Ctrl+}

Tab

Shift+Tab

Shift+Down

Shift+Up

Shift+Right

Shift+Left

Ctrl+Shift+Right

Ctrl+Shift+Left

Shift+Home

Shift+End

Ctrl+Shift+Home

Ctrl+Shift+End

Shift+PgUp

Shift+PgDn

Ctrl+Shift+PgUp

Ctrl+Shift+PgDn

Paste

Undo

Redo

Scroll down

Scroll up

Word left

Word right

Move to top of window

Move to bottom of window

Move to matching bracket

Indent line

Outdent line

Select down

Select up

Select right

Select left

Select next word

Select previous word

Select to start of line

Select to end of line

Select to start of document

Select to end of document

Select page up

Select page down

Select to top of window

Select to bottom of window

Ctrl+A

Ctrl+Shift+]

Insert

Ctrl+O

Ctrl+S

Ctrl+Shift+S

Ctrl+F4

Ctrl+P

Ctrl+G

Ctrl+U

Ctrl+Shift+U

Ctrl+l

Ctrl+Shift+l

Ctrl+Shift+K

Ctrl+Shift+N

Ctrl+Shift+P

Ctrl+Shift+L

Ctrl+M

Ctrl+Shift+M

Ctrl+Shift+C

Ctrl+Shift+V

Ctrl+Shift+W

Ctrl+Shift+Q

F7

F8

Ctrl+Shift+X

Select all

Select to matching bracket

Toggle overwrite mode

Open file

Save file

Save all files

Close file

Print

Goto line

Make lowercase

Make uppercase

Incremental search

Backward incremental search

Toggle bookmark

Next bookmark

Previous bookmark

Clear bookmarks

Toggle outline expansion

Toggle template code expansion

Insert code block

Inverted code block

Write block

Script block

View code

View output

View Template Explorer

Ctrl+Shift+D View Schema Explorer

F4 View Properties Window
Ctrl+Shift+O View Output Window
Ctrl+Shift+R Show Web browser
Ctrl+Shift+B Build

F5 Run

F9 Copy output

F10 Save output

F1 Help

Line Modification Markers

Lines of code that have been edited during the current session are indicated with a yellow line in the left margin of the editor:

=11

-lpublic enum AccessibilityEnum

270 | {

28 Public,

29 Protected,

38 ProtectedInternal,
31 Internal,

32 Private

33 |3}

When you save the file, the yellow markers turn green. Thus at any time, yellow markers show changed but unsaved lines of code, and green
markers show changes in this session that have been saved.

Outlining

Outlining provides a way to hide detail in your code until you want it.

Outlining in the Template Editor is of two types: automatic and manual. By default, Generator automatically creates outline blocks for every script
block, property, enumeration, and object in your code. You can disable automatic outlining from the Outlining submenu of the Edit menu. You can

also create manual outline blocks by inserting #region and #endregion (or in VB, #region and #end region) lines in your code.

To collapse an outline block, click the minus sign at the left margin of the block or place the cursor in the block and press Ctrl+M. To expand an
outline block, click the plus sign at the left margin of the block or place the cursor in the block and press Ctrl+M.

In this code, Template Editor has automatically created outline blocks for the script block and the function, and the developer has added a manual
outline with a region:

“# TemplateScript_cst ~ | % GethccessModifier -
3 Hescript runat="template™> .
4
5 [H#region My Custom Methods | |
6
7 Hpublic string GetAccessModifier{AccessibilityEnum accessibility)
el | ¢
g switch{accessibility)

10 {

11 case accessibility.Public:

12 return "public®;

13 case accessibility.Protected:

14 return "protected”; =

15 case accessibility.ProtectedInternal:

16 return "protected internal”;

17 case accessibility.Internal:

18 return "internal”;

13 case accessibility.Private:

2e return "private™;

21 }

22 |}

23 | B

24 | #endregion

s |

26| #Hpublic enum AccessibilityEnum[]

34

35 | «</script: =
«| : m | ’

Clicking the minus sign to the left of the script block collapses the entire outline, and shows the script block grayed out. If you hover the mouse
over the collapsed outline, Template Editor will display a tooltip with the first few lines of the code contained within the collapsed block:

2
3 §EEscript runat="template"/3_
<script runat="template™> g

#region My Custom Methods

public string GetAccessModifier{AccessibilityEnum accessibility)
{
switch{accessibility)
{
case accessibility Public:
return "public™;
case accessibility Protected:
return “protected”;
case ..

Expanding the script block and then collapsing the region displays the text after the #region keyword:

3 H<script runat="template":>

a
s BEMy Custom Methodd

25

26 Hpublic enum AccessibilityEnumB
34

35 | </script>

Expanding the region and collapsing the function displays the function name.

3 BEe<script runat="template™:

P

-l#region My Custom Methods

+public string GetAccessModifier{AccessibilityEnum accessihilit}rju

i =] h LA

P

#endregion

[T T T

[= I, |

+public enum AccessibilityE num[]

[A}
P

<fscript>

i

Statement Completion
Statement completion is very similar to the IntelliSense feature of Visual Studio. With Statement Completion, Template Editor prompts you with

identifier names as you type.

lﬂ You can bring up the completion lists at any time within a code block by pressing 'Ctrl+Space'.

Sl LEIpUrL PdRs>pPales SLNSHdDXpLurer” Aor
<¥@ Import Mamespace="CodeSmith.Core.Extensions™ &>
public class <%= SourceTable.Name.tocsha| %>

{ @; ToASCI :
/{ Generate a property for @, ToByteArray he selected table.
<% ﬂ?-r*each (var column in SV_.*_ ToCamelCase N
public <%= column.SystemTyp & ToCharArray Mame . ToCSharpIdentifier().ToPascalCase()
_ @, ToCRC32
} 5, ToCSharpldentifier | string StringExtensions. ToCSharpldentifier(this string value)
“; ToCSharplLiteral |:| .
m W ToDelimitedString Ll R

The dropdown list of identifiers appear as soon as you type the dot after an object name. To select a identifier, click it with the mouse or select it
with the arrow keys or by typing enough letters to uniquely identity it and then type a space or other separator character to auto-complete.

Statement completion depends on reflection to gather the information that it presents. This means that your template must
compile successfully for statement completion to work on types defined in the template. Types defined in an external assembly
will show up in the statement completion lists whether the current template compiles or not.

Quick Info

Automated quick info tips show whenever the mouse is hovered over words such as identifiers. The quick info tips display detailed information
about the related type, member, variable, etc. Similar to parameter info tips, all information is presented using rich text formatting.

private void <#= SEImFIlEStr"i:EIgF'F‘DFIEF‘t}’ 200

1 | ﬁ string SimpleTemplate_cst SampleStringProperty
[/ Do somethimg

Parameter Info

Automated parameter info tips show whenever typing an invocation (E.G., a method call). The tips show detailed information about the invoked
member along with details about the current argument being typed. In the case where the invoked member has multiple overloads, arrows show
on the popup and allow toggling between all the available overloads.

<k= GetRandomNumber‘{él-lji E

- int Parameterinfo_cst GetRandomMumber(int seed)
F<scr| A reimplmentation of Sony's random number generator.
seed: A random seed.
! Lsummary’
A5 A reimplmentation of Sony's random number generator.

Fr

HAF <fsummary:

- R I B]
1
=
=

1 /ff <param name="seed"»A random seed.</param:

11 | /4 <returns>A random number based off the seed.</returns:
12 Hpublic int GetRandomMumber({int seed)

13 | {

14 return 4;

15 |}

17 | </script>

As with quick info, parameter info can handle rich-formatted content display using HTML-like markup tags. Colors and font weights or styles can
be used to bring attention to portions of the info tip. The screenshot above shows the font weights bringing attention out to the current parameter
seed.

Multiple signature options can be displayed in a single parameter info tip. In those scenarios, arrows automatically appear that can be clicked.
Alternatively the end user can use the up/down arrow keys to switch between options.

Anonymous Types

In previous versions of CodeSmith Generator there was no support for anonymous types or extension methods. The sample below will show off
an example of Anonymous Type support.

7 var numbers = new System.Collections.Generic.List<int>({};
8

g var anonymousType = new |

1@ Humbers = numbers,

11 MName = "Blake™

i T3

13

14 string name = anon:EmeusTypE

15 _} | {local varzblz) @ <anonymous type> anonymous|ype
14

In this screenshot, we have implicitly declared a variable anonymousType as an anonymous type. The anonymous type's properties are
initialized using a variable (numbers) as well as a string constant ("Blake"). Hovering over the anonymousType variable will display quick info,
which reveals anonymousType as an anonymous type.

7 var numbers = new System.Collections.Generic.list<int>(};

8

9 var anonymousType = new o

1@ Mumbers = numbers,

11 Mame = "Blake"

12 1s

13

14 string name = anonymousType.

1598 | } i Equals

15 g GetHashCode

17 | <fscript> i GetType
ﬂ Mame LE.;ring <anonymous type>= Name
Z Numbers

i@ ToString

We can bring up the statement completion list by typing period after our variable. This will display a list that contains all of the members of the
variable anonymousType. The two properties we declared (Numbers and Name) in the anonymous type's creation expression appear in the list.
You can see it has correctly assigned property names and their types.

Tab Groups and Split Windows

The Template Editor provides you with two ways to edit in multiple locations at the same time. Tab groups allow you to open two or more files for
editing. Split windows allow you to have two editing panes open in to the same file at the same time.

Tab Groups

To create a tab group, select New Horizontal Tab Group or New Vertical Tab Group from the Window menu. Alternatively, click and hold the
mouse cursor on an existing tab at the top of an open document window, and drag the tab down into the code-editing area. When you drop the
tab, the shortcut menu will offer you the choice of creating a new vertical tab group or a new horizontal tab group. In any case, the active tab when
you perform the operation will become the first tab in the new tab group.

Vertical Tab Groups

.
oo CodeBehind.cst - Microsoft Visual Studio (Administrator)

=) B S |

File Edit View Project Build Debug Team Data Tools
;ﬂ'J'ﬁHﬂH b Generate _

o4 SimpleTemplate.cst

VB SimpleTemplate_cst - f SampleBooleanProperty

VisualSVM Architecture Test ReSharper Analyze Generator Window Help

45 CodeBehind.cst ¢

Vfg CodeBehind_cst - | ﬁ SampleBooleanProperty

31| <¥@ Property Name="SampleStringPropert
4l // This class generated by CodeSmith G
5 public class SimpleTemplate

6 {

7 public SimpleTemplate() : base()
8 {

}

1e <% if (SampleBooleanProperty) { &>
11

12 private void <%= SampleStringPrope
13 {

14 // Do something

15 }

16 <% } &>

17 }

13

2|| <%@ Property Name="SampleBooleanProper |

<%@ CodeTemplate Src="CodeBehind.cst.cs™ Inheri

2 <¥@ Property Name="SampleBooleanProperty” Type= =

3 <%@ Property Name="SampleStringProperty™ Type="!

4 <%@ Property Name="SampleStringCollection™ Type;

5 <¥%@ Assembly Name="CodeSmith.CustomProperties”

6f // This class generated by CodeSmith Generator

7 public c¢lass SimpleTemplate

s {

9 public SimpleTemplate() : base() =

1@ {

11 }

12 <% for (int 1 = @; i < SampleStringCollection.Ci
= 13 //«<%= SampleStringCollection[i] %>

14 <% } B

<% if (SampleBooleanProperty) { %>

17 private void <%= SampleStringProperty %>()
18 {

13 [/ <%= GetSomething() ¥»

@

// Do something

[

¥
<% ok
<% if (PropertvFromCodeBehind) 1 %»

[¥]

o ko R R

o)

Horizontal Tab Groups

i Y
oo SimpleTemplate.cst - Microsoft Visual Studio (Administrator) Elﬂlﬂ
File Edit View Project Build Debug Team Data Tools VisualSVMN Architecture Test ReSharper Analyze Generator Window Help

;'J'ﬁﬂ@|: b Generate _

(@ SimpleTemplate.cst x

v?[g SimpleTemplate_cst - |f SampleBooleanProperty

<X¥@ Template Language="C#" TargetlLanguage="C#" %>

2] <¥@ Property Name="SampleBooleanProperty" Type="System.Boolean" Default="True" %> =
31| <¥@ Property Name="SampleStringProperty” Type="System.String” Default="SampleString" Descr‘iption=";|£|
4l // This class generated by CodeSmith Generator on <%= DateTime.Mow.TolongDateString() %>

5 public class SimpleTemplate

6 {

7 public SimpleTemplate() : base()

8

{ -

n

4 CodeBehind.cst

v?[g CodeBehind_cst - f SampleBooleanProperty

4 <X@ Property Name="SampleStringCollection” Type="CodeSmith.CustomProperties.StringCollection” De'Faul‘?I

5 <¥@ Assembly Name="CodeSmith.CustomProperties™ ¥»

&) // This class generated by CodeSmith Generator on <%= DateTime.Mow.TolongDateString() %>

7 public class SimpleTemplate H

8 {

9 public SimpleTemplate() : base()

10 {

11 }

12 <% for (int 1 = @; i < SampleStringCollection.Count; i++) { &>

13 //«¥%= SampleStringCollection[i] %> —
[l « n

Ready

You can move a tab from one tab group to another tab group by dragging and dropping the tab. You can also create additional tab groups by
repeating the process that creating the initial tab group. However, all tab groups must be of the same type; you cannot mix horizontal and vertical
tab groups. If you close or remove the last tab in a tab group, Template Editor will eliminate the tab group.

Split Windows

To create a split window grab the splitter handle at the top of the vertical or horizontal scroll bar (highlighted in green in the image below) with the
mouse and drag it downwards. The result will be a single window with two panes, both of which open on the same file:

- ™y
ea Editor.Tests - Microsoft Visual Studio (Administrator) b= B et

File Edit View Project Build Debug Team Data Tools VisualSVMN Architecture Test ReSharper Analyze Generator Window Help
E—j =iy R_a A2 E

(@ Templatel.cst

= |; b Generate _

vfg Template1_cst - |f SourceTable -

<%@ Template Language="C#" TargetlLanguage="C#" Description="An example on creating a class with proj«

2 <¥@ Property Name="SourceTable" Type="SchemaExplorer.TableSchema" Category="DataSource" Optional="Fj
3 <¥@ Assembly Name="SchemaExplorer"” ¥»
4 <%@ Import MNamespace="SchemaExplorer” %>
5 <¥@ Import Namespace="CodeSmith.Core.Extensions™ %>
7 public class <%= SourceTable.Mame.ToCSharpldentifier().ToPascalCase() %>
o r
“ n |
4 <%@ Import Mamespace="SchemaExplorer"” %>
5 <¥%@ Import Mamespace="CodeSmith.Core.Extensions™ %>
7 public class <¥= SourceTable.Mame.ToCSharpIdentifier().ToPascalCase() >
8 q
9 // Generate a property for each database column in the selected table.
1e <% foreach (var column in SourceTable.Columns) { %>
11 public <%= column.SystemType.FullName %> <¥= column.Name.ToCSharpIdentifier().ToPascalCase() %>

<% } %

Ready

You can scroll and edit in the two panes of a split window independently. Because the two panes are both views into the same underlying file, any
changes in one pane are immediately reflected in the other pane.

Template Navigation
The Go To Definition, Navigation bar, View Code features makes navigating around your template quick and easy.

Navigation bar

The Navigation bar is located at the top of the template document and displays the types and members in the current template. Types are always
shown in the left drop down menu and members are always shown in the right drop down menu.

| “¢ Templatel_cst » | =g Gethame -

<k@ Template Lang -y GetName
<%@ Property MNamg

<k@ Assembly Namg = SourceTable
<%@ Import Mamesy] =@ WrteTolog

L ka B

I

<% WriteTolLog<string>(items); %> ‘ ’.

ohoLA

When you select a type from the drop down, the caret is placed on the first line of the type. The same is also true when you select a member. The
drop down boxes are immediately updated to reflect the current location of the caret.

Go To Definition
This feature will allow you to right click on any identifier (E.G., Classes, Methods, Properties and Variables) in your template and quickly navigate

to where they were defined. This eliminates the need to use Find or scrolling around your template to navigate to find a property or method you
were looking for.

{x writeTDI Aasetrinosdtame o e

Go To Definition I})

To use Go To Definition, just right click on an identifier or press F12.

View Code

This feature allows you to open a code behind or partial class that is defined via a CodeTemplates Src attribute. You can quickly navigate to the
code behind or partial class without opening up Template Explorer or cluttering the Template Editor.

<% WriteTo' — Lla —_—
Go To Definition

View Code
%

To use View Code, just right click anywhere in the template document or press F7.

Go To Line

This feature will allow you to jump to any line in the template document. This is very useful when you are debugging an error and you know the
exact line number you wish to navigate to.

[Go To Line ﬁ

Line number (1 - 24):

i

I QK | [Cancel

To use Go To Line, select Go To from the Edit menu or press Ctrl+G.

Themes and Syntax Highlighting

Syntax Highlighting

The Template Editor support syntax highlighting for many different language types like C, C++, CSharp, CSS, Visual Basic, Html, Java,
JavaScript, Perl, SQL, Xml and many more.

-

e Defaultasprcst - Microsoft Visual Studio (Administrator) = = £

File Edit View Project Build Debug Team Data Tools VisualSVMN Architecture Test ReSharper Analyze
Generator Window Help

P le - S | DiE b Genente |
.@% Default.aspx.cst b

\)[3 Default_zspx_cst vlﬁ GenerateWebControls -
9 <X¥@ Property Name="PageTitle" Type="System.5tring" Default="" Optional="True™ Cé?'
18 <¥@ Property Name="GenerateWebControls"™ Type="5ystem.Boolean™ Default="True™ Opt
11
12 <%%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inhe
13 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.8 Transitional/JEN" "http://www.w3.or

<html xmlns="http://www.w3.org/199%/xhtml" >
<head runat="server">

<titles<¥= PageTitle ¥»</title>
</head>
<body>

<form id="forml" runat="server”>

<divs

<h1l>Hello World</hl>

saprdorg BA

T |

B Default.himl

| hi
Hello World
l:l Split | [Source E| <html>|| <body> || <form#formls || <dive| <hl=>

You can see the template document and generated document in the above screenshot. As you can see the generated document (Default.html) is
being shown in the html designer. This allows you to see the generated documents design view right after you generate!

The Template Editor also supports copying your Syntax Highlighting color schemes to RTF and HTML.

=% @ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="WebApplication._Default" %=

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/ TR/ xhtml1/DTD/xhtml1-transitional.dtd">

<html xmins="http://www.w3.0rg/1999/xhtml" =
<head runat="server" I

When you copy any part of a template document to the Windows Clipboard, an HTML and RTF copy is also placed in the clipboard. This means
that when you paste into an Rich Text box, your formatting will also be copied as shown above.

Themes

The Template Editor also supports themes. Template Editor uses the configuration settings to determine what colors to use.

= | B [|

File Edit View Project Build Debug Team Data Toels VisualSWN Architecture Test ReSharper Analyze Generator Window

@0 Defaultaspx.cst - Microsoft Visual Studio (Administrater)

Help
;'J'Jﬂ\jl ; b Generate _

C@ Default.aspx.cst

“t§ Default_aspx_cst - j} Generate\WebControls
Default Optional Category
Default Optional

sapadold

= PageTitle

Hello World

Building, Running, and Compiling Templates
CodeSmith Generator allows you to build, run, and compile your templates.

Building Templates

To compile the current template, select Build from the Build menu, or press F6, or press Ctrl+Shift+B, or click the Build button on the toolbar. The
Output window will show the results of the build operation.

Running Templates

To run the current template, select Run from the Debug menu, or press F5, or click the Run button on the toolbar. This will execute the current
template, using values from the Properties window together with the template to create the generated code. At the end of the Run operation,
CodeSmith Generator will display the generated code in a generated document.

Compiling Templates

You can compile a template to an assembly (.dll file), which you can then reference from any .NET project. To compile a template to an assembly
follow the steps below.

. Create or use an existing .NET 4.0 class library project.

Add your master template to the project via the add new or add existing. You can also add the template as a linked item.
. Ensure the ClassName and Namespace attributes on the CodeTemplate Directive are set properly on your template.

. Right click the template you added to the project and select properties.

. Once the properties window is open, set the templates CustomTool to TemplateSourceGenerator.

. Build the project you created in step 1

CUTAWN R

Customizing CodeSmith Generator

There are several reasons you might want to customize CodeSmith Generator. You might want to reset file associations or change the Sample
Directory location. You can configure all of CodeSmith Generators settings through the Options dialog.

Opening the Options dialog.

You can open the Options dialog from the Generator menu. You can also open up the Options dialog by launching the csconfig.exe executable
located in the CodeSmith Generator Program Files folder (C:\Program Files\CodeSmith\<VERSION>).

Configuring Settings

All of the configuration settings are grouped into sections and are displayed in nodes on the left hand side as shown in the image below.

Options @
= CPdeSmﬂh Generator 4] |
i - Engine
General 4 Compile
File Associations ConditionalCompilation
- Global Exclusions 4 Merge
Customer Experience Im Language Region Defintions (Collection)
[} Schema Provider Merge Strategy Aliases (Collection)
4 Paths
Application Directony C:A\Program Fles (x86)\CodeSmith\
CodeSmithDatalirectory D ADocuments\Code Smith Generator\.S:
Code SmithMapsDirectory D ADocuments\Code Smith Generator'M
D:\Documents\CodeSmith Generatorl...
CodeSmith TemplatesDirectony D ADocuments\Code Smith Generator\Ti
PluralCvemides MapFile D ADocuments\Code Smith Generator'M
ProbingPath bin;AddIns;SchemaProviders
PropertySetCache Directony C-A\Users\Blake Niemyjski\AppData‘lod
TemplateCacheDirectony CAUsers\Blake Niemyjski\AppData\Loc
4 Property
PropertyDesignerMaps (Collection)
4 Statistics
AverageCost PerHour (1]
AveragelinesPerHour 50
LinesGenerated 17224
TrackLlinesGenerated True
CodeSmith5ample Directory
(Gets or sets the CodeSmith sample directory.
4 [l 3
oK | [Cancel

In the above image, the Engine node is selected and allows you to configure various settings like the location of the Sample Directory
(CodeSmithSampleDirectory). To close the Options dialog, press OK to apply the changes or Cancel to ignore the changes.

ﬂ You may need to restart CodeSmith Generator after changing property values for the changes to take effect.

@ Some properties values may be persisted in real time and will not be rolled back when Cancel is clicked.

Using Schema Explorer

Schema Explorer provides an easy and graphical way to explore the schema of databases. This gives you the ability to manage extended
properties or retrieve the names of tables, views, commands, and their components.

Schema Explorer * O x

%

@ Databases -

E@,—- Marthwind

--[gg Tables
dbo.Categories

dbo.CustomerCustomerDemoe
dbo.CustomerDemographics
dbo.Customers
dbo.Employees
dbo.EmployeeTerritories

dbo. Order Details

dbo.Orders

dbo.Products

dbo.Region

m

dbo.Shippers
=1 Columns
. '} ShipperD

-[Z] CompanyName
G- Keys

-2 Indexes

-EF dbo.Suppliers

#-E dbo.Territories

-3y Views

- Commands 7

Opening Schema Explorer
You can open Schema Explorer by selecting Schema Explorer from the Generator menu.

Adding a new database connection

The following steps will show you how to add a new database to Schema Explorer.

The first step is to click the Manage Data Sources button as highlighted in green.

Schema Explorer * [X

[2] %
A e .

This will open the Data Source Manager dialog box.

Data Source Manager E

MName Type
Morthwind Sgl5chemaProvider

0 The Data Source Manager allows you to Add/Edit or Remove existing Databases.

Next, click the Add button to open the Data Source dialog box.

Data Source =
Mame: PetShop
Provider Type: Sal5chemaProvider b]
Connection String: Data Source=localhost; Initial N E]

Catalog=Morthwind;Integrated Securty=True

o The Test button allows you to test the defined Connection String.

Next, enter a name for the new data source, select an appropriate provider, and enter a connection string.

ﬁ If a connection string designer is available, the ellipsis button (...) highlighted above in green will be enabled.

Connection Properties @I&J

Data source:
Microsaft SQL Server (SalCliert)
Server name:

Log on to the server

@ Use Windows Authentication
() Use SQL Server Authentication

Save my password

Connect to a database

@ Select or enter a database name:
M

() Attach a database file:

o) Lo
—

The above image shows the SQL Server Connection String Editor.

Finally, you can click the OK button to create the newly defined database and click the close button to close the Data Source Manager.

Managing Extended Properties

Managing your RDBMS' Extended Properties has never been easier. You can now Add/Edit, or Manage a new schema extended property directly
inside of Schema Explorer.

This is a very powerful way to add custom meta-data to the already feature rich meta-data that Schema Explorer provides. You can now easily
add database object descriptions, or anything that will help you drive your generation process using a powerful storage on the database server.

lﬂ Click here for more information on using Extended Properties in Templates.

Managing Extended Properties

To manage your Extended Properties, simply open up the Schema Explorer window.

Schema Explorer * A X

,

@ Databases

El@,—- VistaDBPetshop
--[gg Tables

=-F Account

=3 Celumns

]

m

...... Refresh

.21 Email

(5] FirstName

.[Z] LastName (<

Extended Properties

Once the Schema Explorer window is open, continue to expand nodes until you find the Schema Object you are looking for. In the image above
selected the AccountlD Column for editing. To bring up the Extended Property Editor, just Right-Click on a Schema Object and select Extended
Properties.

Extended Property Editor - Account.AccountlD E
Mame | Type Value

bk CS_Description AnsiSting -

| CS_ObjectID Int32 -0
C5_Default AnsiSting -
C5_CodePage Int32 -0
CS_Encrypted Boolean ~ | False
C5_Packed Boolean * | False
C5_ReadOnhy Boolean * | False
C5_lsldentity Boolean * | True

o Items beginning with "CS_" and "MS_" are read-only and are used for CodeSmith's Generator meta-data.

Removing an Extended Property value

You can remove any Extended Property by right clicking a row and selecting delete.

Editing an Extended Property value

You can edit an Extended Property value that is not marked as a read-only by editing the rows Value field.
Removing an Extended Property value

To add a new row just start typing below the last row of data in the Name column.

Saving Extended Property Values

To save your Extended Property values, just click on the OK button. To ignore your changes click on the Cancel button.

e

Some Schema Providers may not implement this feature and throw a Not Supported Exception when retrieving or saving
Extended Property values.

Using the Map Editor

CodeSmith Generator Maps allow developers to reduce the amount of plumbing code in their templates and increase the readability and
reusability at the same time. CodeSmith Generator Maps also provide an easy way to manage dictionary maps for doing word translation lookups
in code. This used to be a a frequent and cumbersome challenge that a template writer must face when trying to map types from disparate
systems.

Map Editor

Generator includes a Map Editor that makes it very easy to create and manage your own CodeSmith Generator Map lists. Generator also ships
several of the most common mapping scenarios and it's output is in a familiar XML format allowing the developer community to contribute and
share maps they create as well through a new map file gallery at the CodeSmith community.

Opening the Map Editor
You can open the Map Editor from the Generator menu.

User interface elements

The section below will walk you through the various user interface elements of the Map Editor.

Map Editor * O X
Systermn-CSharpAlias.csmap |- | 15 4 G
Description: System type to C#|t}rpe alias map
Mame Value -
System.Boolean bool
Systern.Byte byte
Systermn.Char char 3
Systemn.Decimal decimal
Systern.Double double
Systermn.Single float
Systemn. Int32 int
Systermn Intdd lzng
Systern.5Byte shyte
Systern Intlé short =
Return key Case sensitive Find more...
(New File) . Name: The map name is also the file name so consider choosing a name that is fairly descriptive of what

the map's intent is. This drop down allows you to edit and view previously defined map files.

ﬂl If you select (New File) then a new mapping file will be created.

When Generator attempts to discover a map by name, it first looks in the configuration directories, the template directories and
you can also give it a relative or full path.

http://community.codesmithtools.com/CodeSmith/m/maps/default.aspx
http://community.codesmithtools.com/

New File: Clicking this button allows you to create a new mapping file.

=
Open File: Clicking this button will open a Windows Explorer Browse dialog and let you pick a mapping file that exists anywhere on your
hard drive.

Save Copy: Creates a duplicate map file of the currently selected map file.
Description: A description field of what the maps intent is for.

Return Key: The return key check box indicates whether or not to return the original key from the map if the key is not found within the map. This
is important because there can be many situations where there might not be an entry for the key and it's value, but you would still like the key
returned instead of null.

In the image to the above, it's converting a fully qualified type to it's C# equivalent keyword. In cases where one doesn't exist,
such as System.DateTime or System.Guid, you could still use the original key, System.DateTime, which would be completely
valid.

Case Sensitive: The Case sensitive check box determines whether or not to search for the key and consider case sensitivity. Often, word
dictionaries do not require case sensitivity since most use keys that are unique by name.

Find More: Launches a browser session to browse the online gallery of community collaborated maps.

lﬂ Click here to learn more about developing using a CodeSmith Generator Map.

Developing using a Generator Map

While developing templates, a common scenario developers face is accessing a lookup list based on some sort of information. This document
will cover the definition of a Map Directive and then will walk you through an example of using a Map file.

The Map Directive

Using a Map directive is quite easy and very flexible, all you need to do is define a Map Directive. For example, this map directive defines a
template property of type MapCollection that is named CSharpAlias. This CSharpAlias property will be populated with the mapping file
values declared in the System-CSharpAlias.csmap.

<% Map Nanme="CShar pAl i as" Src="System CSharpAlias" Description="Systemto C# Type Map" %

The System-CSharpAlias.csmap is resolved by looking in the current template directory as well as Generator Maps folder
(Documents\CodeSmith Generator\Maps)

.ﬂ Mapping files are resolved by looking in the current template directory as well as Generator Maps folder
(Documents\CodeSmith Generator\Maps).
Map Directive Attributes
The Map directive has five possible attributes. The Name and Src attributes are required, and the other attributes are optional.
Name
The Name attribute references name of the map specified to use in code.
Src

The Src attribute defines the file name of the map file or the file path to the map file.

'ﬂ Adding the extension name is not required.

Description
The Description attribute supplies descriptive text to be displayed at the bottom of the property sheet when this property is selected.
Reverse

When you require to translate the lookup back to the key from the value, you can reverse the map. You simply load the collection using the
reverse overloaded method.

Default

The Default attribute defines the default action to take place when a key is not found. If set to True, a default value will be returned when the
key is not found.

API Usage

You can also use CodeSmith Generator Maps without using a Map Directive. This means that you are creating and populating a new
MapCollection instance through code. You can interface with a map from code simply by loading the map by name.

ﬂ Mapping files are resolved by looking in the current template directory as well as Generator Maps folder
(Documents\CodeSmith Generator\Maps).
Common API Usage
This mimics the usage of the mapping used in the example below which uses a declarative model.
MapCol | ection list = MapCol | ecti on. Load(" Syst em CShar pAl i as. csmap");

|'i st. Ret ur nkeyWhenNot Found = true;
Response. Wite(list[colum. Systentype. Ful | Nare]) ;

Reverse Map

Call the overloaded Load method when requiring to load the map with the key value pairs swapped.

: MapCol | ection |ist = MapCol |l ection. Load(string mapNane, bool reverseMap); i
: Debug. Assert (list[nyValue] == nyKey); i

ﬂ See the CodeSmith Generator API help for more API Coverage.

Example

A common example is a mapping between CLR data types and SQL Server data types. Before CodeSmith Generator Maps, this functionality
would have been accomplished by writing a method with a long switch/Select Case statement as shown in the example below.

public string GetFramewor kType(Dat albj ect Base col um)
{
swi t ch(col um. Dat aType)
{
case DbType. Ansi String:
case DbType. Ansi Stri ngFi xedLengt h:
case DbType. String:
case DbType. StringFi xedLengt h:
return "String";

case DbType. Bi nary:
return "Byte[]";

case DbType. Bool ean:
return "Bool ean";

case DbType. Byte:
return "Byte";

case DbType. Currency:
case DbType. Deci nal :

case DbType. Var Nuneri c:
return "Decinal";

Using CodeSmith Generator maps reduces the amount of code needed for lookups and also allows you to share mapping logic between
templates. We can convert this code into a mapping file by creating a new map file.

Creating the map file
The first step is to open the Map Editor and create a new map file by clicking on the New File button.

Populating the map file

Next, we will start by filling out the name and description of our map file along with entering in the values defined above. The end result should
look something like this:

Map Editor

* O X

| Sgl-System.csmap

-

0 & 4 G

Description: SQL Server data type to MET data type

Mame | Yalue -
Systern Inttd I

binary Systern. Object

bit System.Boolean =

char System.String

datetime System.DateTime

decimal Systemn.Decimal

float Systern.Double

image Systemn.Byte(]

int Systern Int32

Mmoney Systemn.Decimal

nchar Systern.String

ntext System.String

numeric System.Decimal

[] Return key Case sensitive Find more...

o This mapping file ships with CodeSmith Generator.

Updating your template to use a map
We can start by removing the switch/Select Case statement defined above. Doing so will cause build errors (after building the template) any

place where this method was being called. This allows us to use the Error Window to navigate to the usages of the previous code and update
the usages to use a mapping file.

Adding a Map Directive

Using a map is quite easy and very flexible. You simply register the map using the Map Directive (also highlighted in green in the image below).

Updating usages
Once the map has been registered, you simply reference the map and pass it the value similar to using another Collection class.

As you can see on Line 13 we use the mapping file by using the map name (E.G., CSharpAlias) as defined in the Map Directive on line 7.
Previously the code on Line 13 would have called the GetFrameworkType(column) method.

1 <R

2| Name: Database Table Properties

3| Author: Paul Welter

4| Description: Create a list of properties from a database table

5 --%>

& <X%@ CodeTemplate Language="C#" TargetlLanguage="C#" Debug="False”™ Description="Create a list ¢
<%@ Property Name="SourceTable" Type="SchemaExplorer.TableSchema" Category="Context" Descript

<% Map Name="CSharpAlias” Src="Systen-CSharpAlias” Descriptions"System to C# Type Map" %>

o|| <¥@ Assembly MName="SchemaExplorer” %»

10/ <¥%@ Import Namespace="SchemaExplorer" %>

12| <% foreach (ColumnSchema column in this.SourceTable.Columns) { %>

12| private <%= _xb _<%= StringUtil.ToCamelCase(column.Nan

15| public <%= CSharpAlias[column.SystemType.FullName] %> <%= StringUtil.ToPascalCase(column.Namé
16| {

17 get { return _<¥= StringUtil.ToCamelCase{column.Name) %>; }

18 set { _<¥= StringUtil.ToCamelCase(column.Name) %> = value; }

13| }

[x]

e =

Using CodeSmith Generator Projects

CodeSmith Generator Projects manage groups of CodeSmith Generator templates and their outputs all in a single CodeSmith
Generator Project file (.csp). CodeSmith Generator Projects are files that enable you to run an entire generation process at anytime in a
simplistic manner from many different environments.

About

A CodeSmith Generator Project file uses a .csp file windows extension, and stores XML metadata about your CodeSmith Generator Project.
o Learn more by reading Anatomy of a Project File.

A CodeSmith Generator Project file can be generated or configured by right clicking on on a CodeSmith Generator Project File (.csp).

Generation Capabilities
CodeSmith Generator Project files enable the management and execution of a generation process in many environments.
Windows Explorer and Template Explorer

Managing a CodeSmith Generator Project right from Windows Explorer is simple and doesn't require you to use CodeSmith Generator to
manage a project. Options are available through the right-click context menu in your CodeSmith Generator Project file (.csp).
The menu options include:

1. Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.

2. Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.
3. Add Outputs

o Learn more by reading Using CodeSmith Generator Project from Windows Explorer.

Command-Line

You can Generate Outputs of a CodeSmith Generator Project in the command line by using the using the CodeSmith Generator Console
Application. You would simply call:

cs MyCodeSnit hProj ect. csp

r
v
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i
1
1
i

http://docs.codesmithtools.com/display/Generator/CodeSmith+Project+Manage+Outputs

Visual Studio

The tight integration with Visual Studio allows you to fully manage any CodeSmith Generator Project right from Visual Studio! This means you
can maintain a high Code Generation presence right within Visual Studio and not have to switch applications to run code generation.

Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.
Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.

. Add Outputs
Output Options - Only available in Visual Studio, and allows you to control the output options after generation.

PwbpP

o Learn more by reading using a CodeSmith Generator Project inside Visual Studio.

MSBuild

You can create your own custom pre-generation build logic by utilizing the CodeSmith Generator Task within MSBuild. MSBuild tasks help
manage the build process within your Visual Studio projects.

There might be times when you need to customize some aspect of the generation process during it's consuming build process. During these
time you might have to call CodeSmith Generator from MSBuild using the CodeSmith Generator task that's shipped for you.

o Learn more by reading using a CodeSmith Generator Project from MSBuild.

Manage Outputs

Managing your CodeSmith Generator Project is simple to do, and best of all, you don't have to be in CodeSmith
Generator to do it. That's why we've exposed the ability to manage your Generator Project File from just about
anywhere, Windows Explorer, and Visual Studio. Meaning whatever interface you're seeing the project file, you can
Add, Edit or Delete via the Manage Outputs dialog. Code Generation has never been easier.

’
GQ Manage Cutputs - BusinessObject.csp

3 F 008 » | § &%

Outputs
MName Template
Praduct .cs [Default Template: businessohbject cst]
Order.cs [Default Template: businessobject cst]

Profile.cs Disable Cutput Lot oot

Edit Output

Copy Output
Delete Output
Generate Qutput

Mowve Up

Maowe Down

Edit Ternplate

ﬂ You can right click on an output to bring up the menu shown above or double-click to edit.

In the following sections we will show you how to use the full power of Manage Outputs.

Configuring your Options

There are several options you have the ability to configure, initially, you need to add at least one Output.

Outputs
Window

Add
Button

Edit
Button

Copy
Button

Delete
Button

Generate
Selected
Button

Generate
Button

Project
Options
Button

OK Button

Cancel
Button

Are the current configured Outputs for your CodeSmith Generator Project. If an output does not specify a CodeSmith
Generator template to use, the Output will use the Default Template. (depicted above)

Opens the Add Output Form so that you can add a new output with an existing template or use the default template. For more
information read the Add/Edit Outputs section below.

Opens the Edit Output Form which you can edit the output options or template properties. For more information read the
Add/Edit Outputs section below.

Creates a copy of a selected output. This is especially useful if you are creating many outputs that use the same template, but
use a single different piece of meta-data to differentiate from. You would then only have to change the one property for all of
the copied outputs.

Deletes an Output from your CodeSmith Generator Project.

Generates the output for the selected template.

Begins the generation process for this CodeSmith Generator Project. This is the same as selecting Generate Output.

Opens the Project Options dialog.

Persists all modifications that were made on the form.

Cancels any changes from the form and closes the window.

Add/Edit Outputs

To open the Edit Output dialog, you can click on the edit icon in the Manage Outputs toolbar or double click on an output listed in the Outputs list.

There are four panels that cover all of the options for configuring an Output. Below is the entire Add/Edit Output Form.

£, Edit Qutput - BusinessObject.csp =l

MName Fiftar o

.

Template SourceTable

@ Use default template: businessobject cat il
ClassMNamespace V5IntegrationSample
SingleFileMode]

File:

() Use default file name

@ Product.cs E]

Merge
Type: -

Initialization string:

OK || Cancel

Choose a Template

If a Template has been configured from in the Main Manage Outputs screen, then you will see the template name listed under the Use Default
Template option. Otherwise, you will have a File Chooser control to select your template that you want the output to be generated from.

Template
71 Use default template: businessobject cst

@ businessobject.cst| - [:]

Choose an Output

Choosing an output requires you to name the Output file you are wanting to use. The default Output name is created by the template you are
using.

File

™) Use default file name

@ Product.cs E]

ﬂ If you have a template that does not have an output, this field will be ignored.

Optional: Choose a Merge Strategy

If your template uses a merge strategy, either InsertRegion or PreserveRegions, you would enter the pattern here.

Merge

Type: i - '

Initizliz InsetClass
Preserve Regions

Merge Strategy
Configuration

Configuring the Property Sheet

The right pane is a familiar property of the template you have chosen. You would fill in the necessary values for your template to run. The top
shaded yellow area shows the property sheet options.

== A Erffar
S 5

4 Context
SourceTable |
4 Options
ClazsMamespace WSintegrationSample
SingleFileMade |
SourceTable
Table that the object iz based on.

e Any Required fields missing will throw an error when you attempt to save the Output changes.

Project Options

The Project Options dialog allows you to configure behavior for the project. Some of the settings include a default
template, single or multiple file output, default properties and project variables.

Configuring the Project Options

To view a Project Options you must click on the Project Options button. This button is located in the Manage Outputs toolbar as highlighted in
green below.

&'.5 Manage Cutputs - BusinessObject.csp ==

HAFDQZ L » | § &5

Outputs

Project Output

The project output option allow the selection between templates controlling output and all the templates output being merged into a single file.
When single file output is selected, you can add a header and footer to the output file.

Project Options u

General | Default Properties | Variables |

Default Template

Project Output

i) Multiple Files

@ Single Fle Data.cs| E]

| Edit Header | | Edi Footer

Convert to relative paths on save

Default Properties

You can configure default properties to use within your CodeSmith Generator Project. These properties are available to all of the templates
assigned within your CodeSmith Generator Project. These are especially useful to define properties that are fairly static in nature.

[Project Options ﬁ
|Genem] Default Properties |1uranab|ﬁ|

Mame Value
[PetShop .dbml

Variables
The CodeSmith Generator Project supports variables that can be used in the property sets. Variables are an easy way to have a common peace
of data that is stored in only one place.

When saving a CodeSmith Project in the Manage Output dialog, the CodeSmith Generator Project will automatically create variables for all the
unique connection strings in the project. This allows for easy updating of the connection string for complex projects.

=

Project Options

| General I Default Properties | Variables

Value

Mame
ConnectionString 1 Data Source={ocal);Initial Catalog...

Variable Usage

When using the Project Options dialog to edit variables, the variables will be placed in the property sets automatically when the project saves.
This is done by searching for all values that match the variables value and replacing it with the variable name. The reverse is done when a

project is loaded, all variable names are found and replaced with its value.

You can edit the CodeSmith Generator Project manually to place variables as well. The variable for format is its name surrounded by $(), ie,
$(ConnectionStringl).

Sample Project File

<?xm version="1.0"?>
<codeSmi th xm ns="http://ww. codesmni t ht ool s. conl schema/ csp. xsd" >
<si ngl eQut put enabl ed="true" path="Data.cs" />
<vari abl es>
<add key="ConnectionStringl" val ue="Data Source=(local);Initial Catal og=PetShop;Integrated
Security=True" />
<add key="Provi der Type"
val ue="SchemaExpl or er. Sql SchemaPr ovi der, SchenaExpl or er. Sql SchemaPr ovi der" />
</vari abl es>
<def aul t Properti es>
<property name="Dbnl Fi | e">Pet Shop. dbnl </ property>
</ defaul t Properti es>
<propertySet s>
<propertySet nane="Dbml " tenpl ate="CSharp\Dbm .cst">
<property nanme="I|ncl udeVi ews" >Fal se</ property>
<property nanme="Incl udeFuncti ons" >Fal se</ property>
<property nanme="EntityBase">Li ngEntityBase</property>
<property nanme="Di sabl eRenam ng" >Fal se</ property>
<property nanme="Sour ceDat abase" >
<connectionString>$(ConnectionStringl) </ connectionString>
<provi der Type>$(Pr ovi der Type) </ provi der Type>
</ property>
<property name="EntityNanespace" >Pet Shop. Dat a</ pr operty>
<property nanme="Cont ext Nanespace" >Pet Shop. Dat a</ property>
</ propertySet >
<propertySet nane="Entities" tenplate="CSharp\Entities.cst">
<property nanme="I|ncl udeDat aContract">True</ property>
<property nanme="CQut put Di r ect or y" >Pet Shop\ Pet Shop. Dat a</ pr operty>
</ propertySet >
</ propertySet s>
</ codeSni t h>

Using a Generator Project inside Visual Studio

The tight integration with Visual Studio allows you to fully manage any CodeSmith Generator Project right from Visual Studio! This means you
can maintain a high Code Generation presence right within Visual Studio and not have to switch applications to run code generation.

Creating a new CodeSmith Generator Project

To add a new CodeSmith Generator Project file to your Visual Studio Project, right click on a Project or folder inside of a project inside of Solution
Explorer. Then choose File > New Item from the context menu. This will open the Visual Studio New File Wizard. Next, you will want to select
CodeSmith Generator under the General Installed Templates node. Doing this will only show you the available CodeSmith Generator Item
Templates.

New File o) [
Installed Templates Sort by: [Default Search Installed Templates P |
4 General

Type: G |
TR B i%l Generator Project General ype: benera))
: An empty Generator Project file.

Performance
Web Generator Map General
Visual C++
Script i&% Generator Template (Csharp) General

i&% Generator Template (Visual Basic) General

i&% Generator Template (J5cript) General

i&% Generator Starter Template (CSharp) General

ﬂ'% Generator Starter Template (Visual Basic) General

ﬁ‘% Generator Starter Template (J5cript) General

ﬂ‘% Generator Table Template (CSharp) General

i&% Generator Table Template (Visual Basic) General

—

Finally, select Generator Project and then select the Open button or double click on Generator Project.

Managing a CodeSmith Generator Project From Visual Studio

To manage a CodeSmith Generator Project, you can use the Right-Click context menu of a CodeSmith Generator Project file from the Solution
Explorer tool window.

‘Solution Explorer

=N
g Solution 'VSIntegrationSample' (1 project)
4 [VSIntegrationSample
» |=3) References
i3 app.config
“#] Assemblylnfo.cs
4 ﬂ BusinessObject.csp

Manage Outputs

| Generate Qutputs

i Add Output
el Output Options *

E j Open

The Output Options sub menu include:

¥ Add Outputs To Project
¥ Hide Outputs
¥ Generate On Build

Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.

. Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.

. Add Outputs

. Output Options - Only available in Visual Studio, and allows you to control the output options after generation.

a. Add Outputs To Project - Will take any outputs from your CodeSmith Generator Project and include them in your Visual Studio
project.

b. Hide Outputs - Will take any outputs of your CodeSmith Generator Project and make them child nodes, dependant on your
CodeSmith Generator Project file (shown in the image below). Hidden nodes can be collapsed, and since much of the time

BN R

generated code shoudIn't be touched, it's a great way to hide the temptation of other developers attempting to modify the

generated code.
c. Generate On Build - A menu driven way to have your templates use Active Generation. You can also specify the BuildAction

value in the property sheet of your CodeSmith Generator Project (see the Active Generation section for more information).

0 You can remove the CodeSmith Generator Visual Studio Project dependencies by turning off Generate On Build.

Solution Explorer * 0 x
i | 2 [E]
LA Selution 'VilntegrationSample’ (1 praject)
4 7 VSIntegrationSample
= References
Ly spp.config
%] Assemblyinfo.cs
+ g5 BusinessObject.csp
%) Order.cs
] Product.cs
%) Profilecs
%] Supplier.cs
Managing Generation On Build

Generate Build Action for your
CodeSmith Progect files.

T RISt '
] readrme.txd
4] SqlService.cs

Active Generation

You can use ActiveGeneration quite easily in your Visual Studio projects now, simply by specifying the BuildAction of your CodeSmith

Generator Project.

Setting the BuildAction ="Generate" in the properties of you CodeSmith Generator Project file in the Solution Explorer will cause your

entire generation process to occur prior to your project building. This means that any Outputs that you have in your CodeSmith Generator Project
will be generated and if you want, included in the Visual Studio project.

BusinessObject.csp File Froperties
e 3|
Build Action Generate
Copy to Output Dir Do not copy
Custom Tool
Customn Tool Name
Fide Mame BusinessObject.csp
Full Path - Usershejsmathi Do
Example

Tasl

We have a BusinessObject.csp CodeSmith Generator Project in our class library Visual Studio project. This CSP has 4 outputs, that generate
from the same BusinessObject.cst CodeSmith Generator template.

Order.cs
Product.cs
Profile.cs

L]
L]
°
® Supplier.cs

Looking into the properties of the CodeSmith Generator Project, you can view the Build Action of the file, and there is an option to set it to
Generate on Build. Meaning every time you need to tweak your Database meta-data, XML Property meta-data, or CodeSmith
Generator template, the changes are picked up in your Visual Studio project the very next time you build.

This enables you to alleviate much of the frequent developer problems with making changes across all of your classes, during the development
process.

Output Window Generation Feedback

As you can see depicted in the image below, the business object was generated, and then the build process began. This is a very powerful
feature since it allows you to have strong Code Generation integration inside all of your projects in Visual Studio without having to switch to
Template Explorer.

File Edit View Project Build Debug Team Data Tools ANTS Test Analyze Generator Window Help

_5‘1' EERA= A= -] | tEE] _"j| L7 R S Jﬂ ~ :_L| P | Windows Phone 7 Emulator | | ;
F0 e e (S

=2 0PRB B4R MN0D0ES ! 38w s 2 38|

Order.cs % MRS ELIN< Product.cs Profile.cs businessobject.cst Solution Explorer * 1 x I
"fgVﬂntegratlonSamp\e.Order vI ¥ Order(SglDataReader reader) - | éj EI
if (!reader.IsClosed) reader.Close(); = ; Selution 'VSIntegrationSample' (1 project) -
throw new ApplicaticnException("Order does not exist. - 4 EVSIntegrationSample T
Generated Business Object Type J > |30 References
i app.config
o]
-] public Order(SgqlDataReader reader) 4 Ass.emblylnfn.cs
4 @ BusinessObject.csp
{
this.LoadFromReader (reader); ‘@ Order.cs
} ‘% Product.cs =
4 Profile.cs
= protected void LoadFromReader(5SqlDataReader reader) ‘E‘] Supplier.cs
{ CE businessohject.cst

if (reader != null &2& !reader.IsClosed)) EntryPoint.cs
_id = reader.GetInt32(@); 4 'ﬁ Hashtable.csp
if (!reader.IsDBNull(1)) _userId = reader.GetString(l] HashTable.cs
if (!reader.IsDBNull(2)) _orderDate = reader.GetDateT 5] hashtable.cst
if (!reader.IsDBNUll(3)) _shipAddrl = reader.GetStrin =l readmetdt -
if (!reader.IsDBNull(4)) _shipAddr2 = reader.GetStrin .

if (lraadar TeNRMO11fEAY chinfity = reader GetString
100% - 4| m | 3

Show output from: |CodeSmith Generator '|| 3 | & B
Generating project "C:\Users\ejsmith\Documents\CodeSmith GeneratoriSample «

A=

Compiling template "C:\Users\ejsmith\Decuments\CodeSmith GeneratoriSample

Template compilation succeeded. (31 ms)
Rendering cutput 'Product.cs'...

Generated: C:\Users\ejsmith\Documents\CodeSmith Generator\Samples\vé.®\

Generated Business Object Type:
“ou can have the CodeSmith Project use Active

N " N ator\Samplesi\vé.8\
Generation, and build upon every build. ?

m v
=] Output

Adding Files to Visual Studio Using DependentUpon Hierarchy

A new overload to the templates RenderToFile that will take a parent (DependentUpon) file. This will add metadata to the output file that Visual
Studio will use when adding the file to create the hierarchy.

Solution Explorer » X
e ailEls)
g Solution 'Petshop' (3 projects) *

4 _E Petshop.Data
> [=d| Properties
» [+ References

4 |7 Entities
» #] Account.cs E
» 9] Cartes

-] Category.cs
>] Inventory.cs
] kem.cs £
%] Lineltern.cs
] LingEntityBase.cs
a4] Orders.cs

%g Orders.Generated.cs
9] OrderStatus.cs
] PetshopDataContext.cs -

To get your template to support this, you'll need to update the template to use the RenderToFile overload that takes a parent file. Next, add the
CodeSmith Generator Project to the Visual Studio project and Generate Outputs. CodeSmith Generator will automatically add the outputs to your

Visual Studio project creating the hierarchy.

Sample Template Code

//Create Sub tenplate using the Create nethod to automaticly wire everything up
EntityGeneratedd ass entityCd ass = this. Create<EntityGeneratedd ass>();
EntityEditabl el ass partial Oass = this.Create<EntityEditabl ed ass>();

string classNanme = type. Nane;

string parentFil eNane = classNane + ".cs";

parent Fi | eNanme = Pat h. Conbi ne(Qut put Directory, parentFileNane);
// Qutput parent file

partial O ass. Render ToFi | e(parent Fi | eNane, fal se);

string fileName = classNane + ". Generated.cs";
fileName = Path. Conbi ne(QutputDirectory, fileNane);
//Qutput child (dependent) file linking to parent
entityC ass. Render ToFi | e(fil eName, parentFil eNanme, true);

Using Generator Project from Windows Explorer

A CodeSmith Generator Project gives you the ability to control all aspects of your CodeSmith Generator project from
Windows Explorer, Template Explorer or Visual Studio. This type of flexibility makes using a CodeSmith
Generator Project very useful.

Creating a new CodeSmith Generator Project

To create a new CodeSmith Generator Project file, right click inside of Windows Explorer and select New -> CodeSmith Generator Project.

CodeSmith Generator Projects from Windows Explorer or Template Explorer

CodeSmith Generator Projects expose a right-click context menu from within Windows Explorer.
The menu options include:
1. Manage Outputs - Gives the ability to manage your CodeSmith Generator Project.

2. Generate Outputs - Will kick off the generation process to produce outputs configured in your CodeSmith Generator Project.
3. Add Outputs

.ﬁ Database Manage Outputs

] DBDocumenterTempla Generate Outputs

(@ footer Add Output

(@ general 7-Zip 3
(@ header e Compare to "en_gbwebpatch_Entv10r2_rar"

& master ¥ Select Left File

| README

(@ sproc_details [E Compare with CodeCompare

Select Left
48l sproc_summary
4£] sproc_text Generate, Add or Manage Qutputs
& sprocs All from the Right-Click, Context Menu in
B Windows Explarer
4£] table_details
(@table_summar}r)
Share with 3
(@tables
&) PowerdSO 3
(@\riew_details
48] view_summary & smartfTP 4
(@ view_text W TortoiseGit »
(@\riews
%= HgWorkbench
<) TortoiseHg 3
#W¥ TortoiseSVN ¥

Generation Feedback

http://docs.codesmithtools.com/display/Generator/CodeSmith+Project+Manage+Outputs

In Windows Explorer and Template Explorer, you will see a Generation Progress window that will show you progress of your template generation.

’
":}D CodeSmith Generator Project - Hashtable.csp =l

Dione rendering outputs: 3 succeeded, 0 failed, 0 skipped (814ms).
T ———

[] Clese when complete Details <<] [Close

Generating project "D:\DocumentshCodeSmith Generator’\Sampleshve.0) =
Compiling template "D:%DocumentshCodeSmith Generator’\Sampleshwve.0
Template compilation succeeded. (G888 ma)
Bendering output "'StringHashtabkle.cs"'_..
Bendering output 'StringIntegerHashtabkle_ca'._._.
Bendering output 'IntegerHashtabkle_cs'._ ..

Single Cutput: D:\Documents‘\CodeSmith Generatorh\Samples‘\wvé.0WPrc
Done rendering outputs: 3 succeeded, 0 failed, 0 skipped (B1l5ms) .

1 | 1] | r

Details: Toggle Details Button for verbose progress and feedback of your generation process.
Close when complete: Closes the window when generation completes.
Close: Closes the window.

Using a Generator Project from MSBuild

You can create your own custom pre-generation build logic by utilizing the CodeSmith Generator Task within MSBuild.
MSBuild tasks help manage the build process within your Visual Studio projects.

Why would | want to roll my own when you integrate it with Visual Studio?

There might be times when you need to customize some aspect of the generation process during it's consuming build process. During these time
you might have to call CodeSmith Generator from MSBuild using the CodeSmith Generator task that's shipped for you.

CodeSmith Generator MSBuild Targets

An MSBuild target file is used to define your own tasks during the build process. CodeSmith Generator ships their own targets file which defines
all the capabilities of using generating CodeSmith Generator Projects during the generation process. The CodeSmith.targets file defines how to

use the Generate BuildAction from your Generate ltems and also defines how to call CodeSmith with your CodeSmith Generator Project file and
run the generation process.

This file can be found at the following location: C:\Program Files\MSBuild\CodeSmith\CodeSmith.targets or C:\Program Files
(x86)\MSBuild\CodeSmith\CodeSmith.targets

When you set the BuildAction to Generate in Visual Studio, you're actually using the CodeSmithGenerate Target and set the
project item to use the Generate Build Task.

Configuration

In order to use the CodeSmith Generation task you must import the CodeSmith.targets file for usage in your MSBuild Project file.

You can import this target in your Visual Studio Projects by using the CodeSmith Generator Import tag in your Visual Studio Project file.

http://blogs.msdn.com/b/msbuild/

<Proj ect DefaultTargets="Build" xm ns="http://schemas. m crosoft.conl devel oper/nsbuil d/ 2003 ">

<l mport Proj ect="$(MBuil dBi nPat h)\ M crosoft. CSharp.targets ">
<l mport Project="$(MSBuil dExt ensi onsPat h)\ CodeSni t h\ CodeSm t h. targets "> H

<Pr oj ect >

Generating a Generator Project

CodeSmith Generator projects can be run from your MSBuild projects by adding the following line to your project file:

9
=%
@
[92)
3
=
=
o)
hS
S.
®
(e}
24
il
®
I
o
hS
S.
®
o
24
o
(2]
-O.
-
v

In this example we will be showing how to call a custom CodeSmith Generator Project that will generate necessary meta-data prior to building in
release mode.

Example

<Proj ect DefaultTargets="Build" xm ns="http://schemas. m crosoft.conl devel oper/nsbuil d/ 2003 ">

<l nport Project="$(MSBuil dBi nPat h)\ M crosoft. CSharp.targets ">
<l nport Project="$(MBuil dExt ensi onsPat h)\ CodeSni t h\ CodeSmi th.targets ">

<CodeSmi th ProjectFil e="Cener at eMet aDat a. csp" >
<Tar get >
<Pr oj ect >

<Target Name="BeforeBuild" Condition=""$(Configuration)|$(Platform' == 'Rel ease|AnyCPU ">

Usage
The CodeSmith Generator Task exposes a few properties to assist you in your CodeSmith Generator tasks.

ProjectFiles: is the property that can accept a single or ";" separated values of names of CodeSmith Generator Projects that will be used for
Code Generation.

Example

A
g
I
@
w
3.
-
=
i)
L.
@
(e}
Q
il
®
I
%
S
@
e
2
@
&
ol
m
¥
o
(e]
»
i
&
>
@
2
2
ol
=)
a
@
x
(e]
®
U:
v

OutputFiles: is the property that specifies all of the OutputFiles specified in your CodeSmith Generator Project files.
Verbose: a boolean property that indicates whether or not to receive verbose messages.
Debug: a boolean property that indicates if the templates should be compiled in debug mode.

You can also specify your own templates to run during this custom build process by using the CspFiles tag. This will let you specify your items in
an ItemGroup and pass them all into ProjectFiles.

Example

<| tenr oup>
<CspFi |l es I ncl ude="MProject.csp" >
<CspFi |l es I ncl ude="M/Q her Proj ect.csp" >
<Iten oup>

<Target Nane="Build">

<CodeSnmith ProjectFiles ="@CspFiles)" >
<Tar get >

Find More information on MSBuild Tasks.

Using a Generator Project from Command-Line

Since a CodeSmith Generator project contains all necessary metadata to run the execution of the most complicated of
code generation projects. It makes it possible to call your CodeSmith Generator Project through any batch file,
command-prompt, or any application that let's you launch a process with arguments.

The CodeSmith Generator Console Application supports these command-line switches:

BN Administrator: C\Windows\system32\cmd.exe |i‘£‘ﬁj

C:sUzers~Administrator>cs ~7
CodeSmith Generator Console v6.8.8.14013
Copyright <c?> 2082-28011 CodeSmith Tools, LLC. All rights reserved.

— Generator Console OQptions -—

{file> Project file<s?> to he used for output generation or file to
bhe wpgraded with the Aupgrade argument.

Aproperty:<string>* Assign a property value from the command line
sproperty:<{name>={value>. Only property types which support
conversion to and from string can bhe used. {short form -p?

upgrade s <string> Used to upgrade custom tool and batch format files from
previous versions of CodeSmith to CodeSmith Project files.
Thiz will wupgrade the specified file and save it to the
name specified here. supgrade=<output?> (short form ~ul

sverhosel+i-1] Display verhose messages. (short form Auv)

sdebugl+i—1 Emit debugging information <{allows attaching a debugger to
a running templated.

stempfiles[+i—1 Keep temporary files (if debug is on then tempfiles will
alszo be on).

Suppress generator copyright message.
Reset all configuration, samples and maps to their defaults.

Reset configuration information to the defaults.
Reset licensing information in case you are having
licensing issues.

sresetsamples Reset samples to the newest default versions.

sresetmaps Reset maps to the newest default versions.

sclearcache CIB?PS all cached template and property entries from the
cache .

Uzage samples:
s sample.csp
sample .csp spipropertyl=sample
customtool.xml Au:newproject.csp
s batch.xml ~u:inewproject.csp

C:=“UserssAdministrator>cs MyCodeSmithProject.csp_

Input Options
<file> Project File to be used for generation

Iproperty:<name>=<value> or /p:<name>=<value> Assign a property value from the command line. Only property types which support
conversion to and from string can be assigned in this way.

Compiler Options

/debug[+|-] Emit (or suppress) debugging information (allows attaching a debugger to a running template)

http://msdn.microsoft.com/msdnmag/issues/06/06/InsideMSBuild/default.aspx

Itempfiles[+|-] Keep (or delete) temporary files (if debug is on then tempfiles will also automatically be on)

Miscellaneous Options

Iverbose or /v Display verbose messages

/help or /? Display usage information

Inologo Suppress generator copyright message

Anatomy of a Project File

At a high level, a CodeSmith Generator Project file manages all of the template properties in a given CodeSmith
Generator Project. These files use XML to declaratively manage all of the CodeSmith Generator template properties for each
of your template Outputs using a .csp file extension.

Every CodeSmith Generator Template uses a Property Sheet that help drive template meta data in your generation process. When the property
sheet is saved, it is saved as a Property Set, an XML serialized version of your properties and their values. Saving an XML version enables you
easily recover all of the options you designated while configuring your Property Sheet when this file was created.

Header

The XML Header specifies the current XML Schema Definition for a CodeSmith Generator Project. The CodeSmith Generator node also
encapsulates the entire body of the CodeSmith Generator Project XML Files.

<?xm version="1.0"?>

<codeSm th xm ns="http://ww. codesm t ht ool s. conl schena/ csp. xsd" >

This csp.xsd can be found at | NSTALL DI R/'Schemas/csp.xsd

Defaults

Default Template - You can configure a CodeSmith Generator Project to use Default Template, when configured, each of the Property Sets that
do not have a Template assigned to them will automatically use the Default Template to execute and run.

A
Q
)
o
I
=
—~
_|
)
o
=4
®
o
o
2
>
T
o
c
@,
S
©
n
I
o
S
®
(e}
24
(e]
”
a2
-
v

Default Properties - You can configure default properties to use within your CodeSmith Generator Project. These properties are available to all of
the templates assigned within your CodeSmith Generator Project. These are especially useful to define properties that are fairly static in nature.

<def aul t Properti es>
<property nane="C assNanespace" >ConpanyNane. Root Namespace</ property>
</ defaul t Properties>
Variables

The CodeSmith Generator Project supports variables that can be used in the property sets. Variables are an easy way to have a common piece of
data that is stored in only one place.

You can edit the CodeSmith Generator Project manually to place variables. The variable for format is its name surrounded by $(), ie,

$(ConnectionString1).

<vari abl es>
<add key="ConnectionStringl" value="Data Source=(local);Initial Catal og=Pet Shop;Integrated
Security=True" />
<add key="Provider Type"
val ue="SchemaExpl or er. Sql SchemaPr ovi der, SchemaExpl or er. Sql SchemaPr ovi der" />
</vari abl es>

<propertySet name="Dbnl" tenpl ate="CSharp\Dbnl.cst">
<property nane="Sour ceDat abase" >
<connectionString>$(ConnectionStringl) </ connectionString>
<provi der Type>$(Provi der Type) </ pr ovi der Type>
</ property>
</ propertySet>

lﬂ To learn more on variable usage please click here.

Property Sets

For every template output you will see the associated PropertySet and it's output. The PropertySet may or may not have a template defined, if it
does not, it will use the default template value for generation. The Properties defined within each of the property sets are specific to this Output
and are not shared with any other Outputs.

<propertySets>
<propertySet output="Product.cs">
<property nane="SourceTabl e">
<connectionString>Data
Sour ce=. \ SQLEXPRESS; At t achDbFi | enane=| Dat abDi r ect or y| \ Pet shop. ndf ; </ connecti onStri ng>

<provi der Type>SchenmaExpl or er. Sql SchemaPr ovi der, SchenaExpl or er. Sql SchemaPr ovi der </ pr ovi der Type>
<t abl e>
<owner >dbo</ owner >
<name>Pr oduct </ nane>
</t abl e>
</ property>
</ propertySet >

<propertySet output="Order.cs">
<property nane="SourceTabl e">
<connectionString>Data
Sour ce=. \ SQLEXPRESS; At t achDbFi | ename=| Dat abDi r ect ory| \ Pet shop. mdf ; </ connecti onStri ng>

<provi der Type>SchenmaExpl or er . Sql SchemaPr ovi der, SchemaExpl or er. Sgl SchemaPr ovi der </ pr ovi der Type>
<t abl e>
<owner >dbo</ owner >
<nane>QOr der s</ nanme>
</tabl e>
</ property>
</ propertySet >
</ propertySet s>

Defined Property Sets

Each property set is defined between propertySet nodes as depicted in the image below.

1<?xml version="1.0" encoding="utf-8"7=

z <codesmith xmlns="http://www. codesmithtools. com/schema,/csp. xsd">

= «variabless

4 <add key="Connectionstring” value="Data Source=.;Initial Ccatal
3 <add key="Provider" value="5SchemaExplorer.sqlschemaProvider,5sc
& <=/variables:>

7 =propertySetss

<propertyset name="Hbms" template="..%. .%\..%.. \Samples'Templat

E
9 <property name="SourceDatabase">

10 <zconnectionstring=%(Connectionstring)</connectionstrings
11 zprovider Type=%(Provider)</provider Type>

12 </ property=

13 <property name="IncludeFunctions">True</property=

14 <property name="Includeviews">=True</property=

1z =/propertyset>

16 <propertyset name="Entities" template="..%..%..% . \Samples'Tem
17 <property name="SourceDatabase">

18 <connectionstring=%(Connectionstring)</connectionstring=
13 <provider Type=$(Provider)</provider Type>

20 </property>

21 <property name="EntitiesDirectory =Entities</property=

2z <property name="ModelsDirectory =Models</property=

23 <property name="GenerateDataContext' " >True</property=

24 <property name="EntityBaseClass '=EntityBase</property=

z5 {fprnpertySEtA

26 </propertysetss
27 </ codesmiths=

1| 1] b

Using the Console Application

Using the CodeSmith Generator Console Application covers the following sections:

Incorporating Generator into Your Build Process

Using a CodeSmith Generator Project from Command-Line
Basic Console Application Usage

Handling Input

Handling Output

Incorporating Generator into Your Build Process

Using Template Explorer or the Visual Studio integration interactively to generate code can significantly boost your productivity, but that's only part
of what CodeSmith Generator can do for you. In many cases, you'll see even more benefit by incorporating CodeSmith Generator directly into
your build process. To facilitate this, CodeSmith Generator includes a console version that you can call from a CodeSmith Project, a build tool
such as NAnt. or a Visual Studio pre-compile task in MSBuild. This helps you ensure that any generated files in your application are always
up-to-date.

For example, suppose you are using CodeSmith Generator to automatically create a data access layer and business objects in C# based on
selected tables in your database. What happens if you change the schema of those database tables? If you're using CodeSmith

Generator manually, you must remember to regenerate the DAL and business objects. But if you've hooked up the CodeSmith Generator Console
Application to your build process, the changes in the database schema will automatically be reflected in your final .NET application the next time
that you compile the application, without any further effort on your part.

In this section of the help file, you can learn how to:
® Use the CodeSmith Console Application

® Specify template metadata
® Set CodeSmith compiler options

Basic Console Application Usage

The CodeSmith Generator Console application enables executing CodeSmith Generator Project files from the command line in a very simple
manor. Here is an example of executing the PersonArray CodeSmith Project file:

...

Handling Input

To make effective use of the CodeSmith Generator Console Application, you must supply the appropriate metadata for the template that you are
using as the basis for the generated file. There are two ways that you can do this:

® By supplying a CodeSmith Generator Project File
® By supplying properties on the command line

Specifying Properties on the Command Line

You can specify individual properties on the command line, using the syntax

...

...

or

...

Only property types which support conversion to and from string can be assigned in this way.

You can include multiple instances of the /property switch on the command line to define multiple properties in this way.

‘1, If you specify both a property set XML file and a property value on the command line, the property value will override any setting
in the property set XML file.

Handling Output

To see an example of how to handle output check out:

® Default Output Files in Templates

Default Output Files in Templates

To use a template's default file name for the output file, specify the / out : def aul t command-line switch.

Within a template, you can specify the default output file name by overriding the Get Fi | eNane method. For example, if your C# language
template contains a property named Cl assNane, you might include this code to set the default output file name:

<script runat="tenplate">
public override string GetFileNane() {
return ClassName + ".cs";

}

</scri pt>

Using ActiveSnippets

CodeSmith Generator delivers strong integration within Visual Studio and ActiveSnippets are a driver toward
increasing developer productivity. ActiveSnippets, at a high level, are CodeSmith Generator templates with exposure
to the entire .Net Framework which you can utilize with a few keystrokes inside of Visual Studio. The output of your

ActiveSnippet will be rendered right where you expanded on the code editor.

You can watch this video tutorial for more information:

Visual Studio currently offers support for simple template based snippets. This is a great feature for simple snippets of code,
however these templates do not contain any advanced logic or access to rich meta-data. For simple snippets such as creating a

simple property shell without any logic, we still recommend using the Visual Studio snippet.

Things to consider before creating an ActiveSnippet
® You have access to the entire .Net Framework, SchemaExplorer, XmlProperty, Custom Assemblies, or any other rich meta-data.
® Complex Objects such as an XmlIProperty and SchemaExplorer types can exist as properties in your CodeSmith Template, and similarly

act as arguments in an ActiveSnippet.
® An ActiveSnippet can setup default values for arguments that are fairly static in your template.

Creating an ActiveSnippet Template

The first step in creating an ActiveSnippet is by simply creating a CodeSmith Generator Template. In this example, we'll create a
CodeSmith Generator Template that doubles as an ActiveSnippet and is able to generate properties for a given TableSchema in C#.

lﬂ This template can be found in Template Explorer under the ActiveSnippets\CSharp or ActiveSnippets\VisualBasic folders.

lﬂ For more information on creating a new template please take a look at the following tutorial.

Requirements

The required output needs to look like this for every column in a table.

private int _orderld;

public int Oderld

{
get { return _orderld; }
set { _orderld = value; }

Writing the Template

When first creating a template, think about the requirements that we defined above and focus and write the template in small steps. This keeps
you from getting overwhelmed by writing everything at once.Next, try and think about how you would write the template by outlining some steps
in pseudocode. This will make writing the template much easier. Here are a few steps that we used to create this template:

Iterate through the Columns (SchemaExplorer.ColumnSchemacCollection) of the template property SourceTable

(SchemaExplorer.TableSchema).
2. Create both a field and a property to encapsulate the column.
3. Use a CodeSmith Generator Map to get the correct type for the field and property.
4. Ensure my field is CamelCased and my Property Name is PascalCased.

1.

Finally, ensure that the template compiles and runs from Template Editor or Template Explorer.

http://en.wikipedia.org/wiki/Pseudocode

=1
Name: Database Table Properties
Author: Paul Welter

4| Description: Create a list of properties from a database table

%>

6 <&@ CodeTemplate Language="C#" TargetLanguage="C#" Debug="False™ Description="Create a list ¢
1| <%@ Property Mame="SourceTable" Type="SchemaExplorer.TableSchema™ Category="Context" Descripi
g <&@ Map Mame="CSharpAlias" Src="System-CSharpAlias™ Description="System to C# Type Map" &>

s | %@ Assembly Mame="SchemaExplorer” %»
10/ «%@ Import Namespace="SchemaExplorer”™ %>

Power of Te

12| <% foreach (ColumnSchema column in this.SocurceTable.Columns) { %>
private <¥= CSharpAlias[column.SystemType.FullName] %> _<¥= StringUtil.ToCamelCase(column.Nan

public <%= CSharpAlias[column.SystemType.FullName] %> <%= StringUtil.ToPascalCase(column.Name

18 {

17 get { return _<%= StringUtil.ToCamelCase(column.Name) %>; }
18 set { _<%= StringUtil.ToCamelCase(column.Name) %> = value; }
1g } trinaLt r o I

21 <%} %

Visual Studio Integration

The next step is to launch Visual Studio, and explore the options available for using ActiveSnippets within Visual Studio. This will help you get a
feel for the integration capabilities for using your ActiveSnippets.

Analyze | Generator | Window Help
E2 ||: 48] Template Explorer

- ¥ Schema Explorer
—

l. Map Editor —
— Manage Data Sources —

Ea Expand ActiveSnippet Ctrl+E, Ctrl+E

{% Output ActiveSnippet Usage Ctrl+E, Ctrl+R

ActiveSnippet Configuration
Help]

To access various ActiveSnippet features, you can use keyboard shortcuts or use the ActiveSnippet menu items. These are located in the
Generator submenu on the right hand side of the Visual Studio menu bar. Once the Generator menu is expanded, you will see the menu items for
ActiveSnippet's as shown above. The command keyboard shortcut is located to the right of every menu option that has one configured.

ActiveSnippet Configuration

The ActiveSnippet Configuration can be accessed by selecting the ActiveSnippet Configuration menu item located in the Visual Studio
Generator sub-menu. The ActiveSnippet Configuration dialog allows you to Add, Remove, Edit or view all ActiveSnippets, Once you've created a
template for usage as an ActiveSnippet, you must add the ActiveSnippet which maps to a CodeSmith Generator Template.

e ActiveSnippets must be configured inside Visual Studio in order to be used.

Find detailed information on Configuring an ActiveSnippet.

Output ActiveSnippet Usage

ActiveSnippet usage information can be obtained through the CodeSmith Generator Output Window. CodeSmith attempts to find the
ActiveSnippet usage information using the context of the current line with focus. To display the output usage for configured ActiveSnippets you
can select the Output ActiveSnippet Usage menu item or press Ctrl+E, Ctrl+R.

Output * B X

Show output from: | CodeSmith Generator '| | 3 | ESIEN | =% | =
ActiveSnippet: a

tp - TableProperties (.cs)

m

ActiveSnippet Usage Inforamtion:
By hitting CTRL-E CTRL-R. on your
ActiveSnippets.

Usage:

tp «<SourceTablex
Parameters:

SourceTable - Table that the object is based on. (Required) -
4 m [

Notable Information
® Executing Usage with no alias on the editor will display all ActiveSnippets.

® Executing Usage using part of the prefix, will display a list of all ActiveSnippets starting with that prefix
® For Example, using "t" by itself will show a list of all ActiveSnippets beginning with a "T".

Expanding an ActiveSnippet

Attempts to execute the ActiveSnippet using the context of the current line with focus. If there is an ActiveSnippet
configured and no errors, CodeSmith Generator will attempt to find the ActiveSnippet by Alias or by Name. If the
ActiveSnippet is found, CodeSmith Generator will compile the template if not compiled, and then execute the template
with the given arguments. The template output of the ActiveSnippet will be placed on the editor control of Visual
Studio.

Syntax
Calling an ActiveSnippet is easy. Once configured, you simply have to enter the alias or name along with any argument parameters. Once you

have defined the active snippet you want to expand, you just need to select the Expand ActiveSnippet menu item or press CTRL-E, CTRL-E.

If you are unsure about an ActiveSnippets usage is, you can select the Output ActiveSnippet Usage menu item or press
Ctrl+E, Ctrl+R.

ﬂl By default the shortcut for Expanding an ActiveSnippet is CTRL-E, CTRL-E.

Example

In the example below we will execute an ActiveSnippet with the name tp and pass it one argument parameter.

...

® You can also access an ActiveSnippet by referring to it's full name.
® You can use complex objects, such as a TableSchema by referring to it's fully qualified name Petshop.dbo.Orders

to execute this active snippet we will select the Expand ActiveSnippet menu item or press CTRL-E, CTRL-E. The below screenshot shows the
code which was generated by this ActiveSnippet.

B using Syscem;

using Syscem.Collections.Generie;
Lusing System.Text;
[namespace CSharpCodeGensracorSample

class Sample

privace iRt _GEHEEIH,"

| public int OrdezId F:-c||.|||||i|||_| |".:Ii'.-'|'5||i|||:|'r':'

1 Expand: CTRL-E + CTRL-E
1 get { recurn orderld; }
et { _C:dt:ld = valus; }

17 Privace scring _'..‘!Ef]:d;

public string Userld

recurn _userld; }
_userld = value: }

e

£5 private System.DateTime _OIGEID&EE:
public Sysatem.DateTime QOrderDate

eturn _orderDate; }
ozdezDate = valuer |}

Frivate aTIling _!hlp;—;ﬂd:;.’

(R TSR L R T P

Notable Information

® |f there is an error executing an already configured ActiveSnippet, usage information on the discovered ActiveSnippet will be presented.
This shows the ActiveSnippet along with all of the arguments for that template.
® Template is not valid.
SourceTable is required.
tp - TableProperties (.cs)
® |f CodeSmith Generator can not find the desired ActiveSnippet by name or by configured alias, then a full list of all available
ActiveSnippets will be presented in the CodeSmith Generator Output Window.

Output * 08X
Show cutput from: | CodeSmith Generator '| ‘;l | \,-J B | =K | =
Error: ActiveSnippet not found for alias 'notfound'. "
ActiveSnippets:

tp - TableProperties (.cs)

te - Tabletnum (.co List of Configured
cx - CustomException (.cs) A'Ctivesnippets

cw - CustomEvent (.cs)

ActiveSnippet Configuration

The ActiveSnippet Configuration can be accessed by selecting the ActiveSnippet Configuration menu item located in the Visual Studio
Generator sub-menu. The ActiveSnippet Configuration dialog allows you to Add, Remove, Edit or view all ActiveSnippets, Once you've created a
template for usage as an ActiveSnippet, you must add the ActiveSnippet which maps to a CodeSmith Generator Template.

Adding a new ActiveSnippet

The first step to creating a new ActiveSnippet is to click the Add button, and use the Template Chooser Window to browse to the CodeSmith
Generator template that will be serving as your ActiveSnippet. Once you select the template, you must configure at minimum the Template
Options for the template.

Template Options

The template options tab holds the mapping information about your CodeSmith Generator template. This information is required to allow you to
have access to this template from within Visual Studio.

ActiveSnippet Configuraticon ﬁ
ActiveSnippets:
tp - TableProperties (.vb) v || Add || Delete |

Template Options |.Pu'gumerrt Mapping | Default Property "u"alues|

Alias:
tp

Template:
Csers*Blake Miemyjski*Documents'Code Smith* Samples®w 5. 2% Templates' Active £ D

Description:

TableProperties

Preferred Extensions: (Examples: cs vb aspx)
vb

Template Languags:
VB

Find more... QK][Apply ” Cancel

Template: The full path to the CodeSmith Generator template.

Alias: The ActiveSnippet Alias is the command to be used as the alias representing the selected CodeSmith Generator template.Description:
Specifies the friendly name description of the ActiveSnippet. It will be shown during the Output Usage information.Target Extensions: The
template target language is used as a hint for ActiveSnippets that have the same name.Template Language: The template language shows the
selected CodeSmith Template Output Language.

Argument Mapping

Configuring the arguments for an ActiveSnippet is a powerful feature because it does not force you to have to always pass all properties in for the
selected CodeSmith Generator Template as arguments.

-~

ActiveSnippet Configuration g
ActiveSnippets:
|tp - TableProperties (.vb) ~ || Add | [Delete |

| Template Gptiunsl Argumert Mapping | Default Property ‘u’alues|
Template Properties: Arguments:

Outputfie __ [IlSourceTable]

[][+]

Al [¥][A][v]

Find more. .. OK][Apply ” Cancel

This tab is a dual pane select box which shows all template properties to the left, and all arguments to the right. Control arrows are used to move
properties to and from the Arguments window. The up and down arrows are used to setup the argument order of the ActiveSnippet.

Template Properties Box: A window of all the property names in a template.Arguments Box: A window of all the arguments that will be required to
use your ActiveSnippet

Default Property Values

The Default Property Values tab will allow you to enter possible default values for your CodeSmith Generator Templates' Property Sheet. This will
show all the properties for the ActiveSnippet based CodeSmith Generator Template.

ActiveSnippet Configuration ﬁ

ActiveSnippets:
|tp - TableProperties (.vb) ~ || Add | [Delete |

| Template Options | Argument Mapping | Default Property Values |

| a@|9
B Conteat
SourceTable

B Qutput
OutputFile

DutputFile
Select a file to output the results

Find more... OK || Apply || Cancel

e Values that you want to be required properties for ActiveSnippet arguments would not be filled in as a default value.

Basic Template Syntax

Basic Template Syntax covers the following sections:

The CodeTemplate Directive
Including Comments

Declaring and Using Properties
Escaping ASP.NET Tags

The CodeSmith Generator Objects

The CodeTemplate Directive

Every CodeSmith Generator template must start with a CodeTemplate directive. Every template must contain precisely one CodeTemplate
directive. The only thing that can appear before the CodeTemplate directive in the template is one or more comments.

The CodeTemplate directive is the only required directive and is used to specify the general properties of the template, such as the language that
the template is written in and the description. For example, here's the CodeTemplate directive from the SortedList.cst sample template:

<% CodeTenpl at e Language="VB" Tar get Language="VB" Descripti on="Generates a strongly-typed
col l ection of key-and-value pairs that are sorted by the keys and are accessible by key and by
index." %

This directive specifies that the template uses Visual Basic as its own code-behind language, and that it produces VB output. It also includes a
description of the purpose of the template.

CodeTemplate Directive Attributes

There are seven attributes that you can supply to the CodeTemplate directive. The Language parameter is required; all of the rest are optional.

Language
The Language attribute specifies what language will be used to write the template. Possible values for this attribute are:
® C# to author the template in C#

® JS to author the template in JScript
® VB to author the template in Visual Basic .NET

TargetLanguage
The TargetLanguage attribute is used to specify the output language of the template. You can use any string you like for the attribute; CodeSmith

Generator doesn't use it in any way to generate the template's output. The Template Editor also uses this attribute to determine how to syntax
highlight the static content of a template.

Description

The Description attribute is used to describe your template in a general way.

Inherits

By default all CodeSmith Generator templates inherit from CodeSmith.Engine.CodeTemplate. This class provides the basic functionality of the
template; much like the Page class provides the basic functionality of an ASP.NET page. The Inherits attribute can be used to specify that a
template inherits from a different class. However, any class that a template inherits from must inherit, directly or indirectly, from
CodeSmith.Engine.CodeTemplate. CodeSmith Generator must also be able to find this class. To ensure this, you must either supply an Assembly
directive pointing to the assembly that contains the class, or a Src attribute that points to the source code for the class.

For an example of using template inheritance, see the BaseTemplates sample project included with your CodeSmith Generator installation. This
project defines two new template classes, OutputFileCodeTemplate which inherits directly from CodeTemplate and SqlCodeTemplate which

inherits from OutputFileCodeTemplate. To base a new template on SqlCodeTemplate you could include these directives at the top of your
template:

<%@ CodeTenpl at e Language="CS" Inherits="CodeSnith. BaseTenpl at es. Sql CodeTenpl ate" %
<%@ Assenbl y Name="CodeSnit h. BaseTenpl at es" %

Having done this, all of the helper methods defined in the OutputFileCodeTemplate and SglCodeTemplate classes, such as GetSqlDbType(),
IsUserDefinedType(), GetSglParameterStatements(), and many more, are available to your template. Template inheritance thus provides a good
way to reuse tested utility methods across multiple templates without cut-and-paste duplication of code.

The BaseTemplates sample can be found in your extracted samples (...\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\BaseTemplates)

Src

The Src attribute allows you to include functionality from another class in your template by dynamically compiling that class file as part of your
template. Set the value of the attribute to point to the source file of the class that you want to include in the template. You use the Src attribute to
enable the CodeSmith Generator code-behind model.

Debug

The Debug attribute is used to determine whether or not debug symbols should be included in the generated assembly. Click here to learn more
about debugging.

LinePragmas

The LinePragmas attribute is used to determine whether or not line pragmas are generated during template compilation. When this attribute is set
to True, template errors will point to the template source code. If it is set to False, then template errors will point to the compiled source code.

ResponseEncoding

The ResponseEncoding attribute is used to set the encoding for the template content and it's outputs. The ResponseEncoding attribute supports
values from the System.Text.Encoding.GetEncoding method. By default, the encoding is set to ASCII.

OutputType

The OutputType attribute is used to set the output type of the template. The following values can be used:

* Normal - This is the default setting and will cause the output of the template to be written to the normal Response stream.

® Trace - This setting will cause the output of the template to be written to the Trace object.

® None - This setting will cause the template to not output anything. This is useful in a master template scenario where the template just
calls other templates and outputs those to files and the master template itself doesn't output anything.

NoWarn

Comma-delimited list of the warning ID numbers that the template compiler should suppress. These are standard C# / VB compiler warning 1D
numbers.

ClassName

The ClassName attribute is used to specify the class name of the compiled template. This attribute should be defined when using partial
code-behinds.

Namespace

The Namespace attribute is used to specify the namespace for the compiled template. This attribute should be defined when using partial
code-behinds.

Encoding

The Encoding attribute allows you to define the encoding the current template document will be saved as. The default encoding of a template
document is UTF-8.

ResponseEncoding

The ResponseEncoding attribute allows you to define the encoding the generated document will be saved as. The default encoding of a
generated document is UTF-8.

If a generated document already exists on disk and the regenerated documents contents match exactly, the documents
encoding will not be changed.

Including Comments

To include comments in a template, surround them with <%-- and --%> markers. Comments may span multiple lines. For instance, this comment
will have no effect on the template's output:

<OA3_

Nanme: Test Har ness. cst

Description: Generates a standard test harness for an object
--%

@ Inside of a script block, use the commenting syntax of the template's language. For instance, if your template is written in C#,
comments in script blocks should be prefaced with // or /* commented */.

@ To include a comment in a template's output, treat it like any other string. The comment in this template fragment will
be copied directly to the generated code:

<%@ CodeTemplate Language="VB" TargetLanguage="VB">
' This class generated by CodeSmith Generator

Declaring and Using Properties

The key to making templates flexible and useful is to define properties or metadata. CodeSmith Generator uses properties to customize the
generated code. When the user opens a template in Template Explorer, they must supply values for all of the required properties defined in the
template before they can generate the code. Note that properties can be defined as optional properties, in which case the user need not supply a
value before generating code.

Properties are specified in the template using a Property directive. For example, this directive specifies a property named Key which accepts a
string value:

)
N
®
3
o
©
[0}
=
-
<
&
3
I I:
&
<:
_|
<
©
@
| I:
&
%)
-
@
3
@
-
>
Q:
X

The value that the user enters for the Key property will be inserted into the template output any place that the property name appears surrounded
by the special characters <%= %>. For example, consider this template:

<%@® CodeTenpl at e Language="VB" Tar get Language="VB"> H
<%@ Property Name="Key" Type="System String" % :
' The key is <% Key %

Properties in CodeSmith Generator can be simple or very complex. You can define enumerated properties that allow the user to choose from a
predefined selection of values. You can use CodeSmith Generator 's SchemaExplorer to fill properties from database objects. You can create
properties based on the contents of an XML file, or even define your own custom properties complete with custom dialog boxes for user property
editing.

Property Directive

To declare a property, you use a Property directive. For example, this directive defines a property named ClassName of type System.String:

: <% Property Nane="C assNane" Type="System String" Category="Context" Description="The nane of the :
: class to be generated." % :

Property Directive Attributes

The Property directive has nine possible attributes. The Name and Type attributes are required, and the other attributes are optional.
Name
The Name attribute is used as the name of the property when it is displayed on the template's property sheet in CodeSmith Explorer. This is also

the variable name that is used to store the value of the property within the template. This must be a legal variable name within the template's
language. For example, if the template uses C# as its language, then the name must follow the rules for C# variables.

Type

The Type attribute specifies the .NET type of the property. This parameter can be any .NET data type, though for complex types you may need to
specify an Editor attribute to allow the user to successfully supply a value for the property.

For scalar types, you must use Base Class Library types such as String or Int32 rather than language-specific types such as
string or int.

Default

The Default attribute is used to set the default value for this property. If you omit this attribute, then CodeSmith Generator does not supply a
default value for the property.

Category

The Category attribute specifies what category this property should appear under in the CodeSmith Explorer property sheet. If you omit this
attribute, CodeSmith Generator will place the property in a category named Misc.

Description

The Description attribute supplies descriptive text to be displayed at the bottom of the property sheet when this property is selected.

http://docs.codesmithtools.com/display/Generator/Declaring+a+Simple+Property

Optional

The Optional attribute specifies whether or not this property is optional. If a user does not specify a parameter that is not optional then CodeSmith
Generator will not let them proceed. A value of true means that a value for the property is not required, and a value of false means that a value for
the property is required.

Editor

The Editor attribute specifies the GUI editor that will be used in the property grid for this property. This is equivalent to placing an [EditorAttribute]
on a code property.

EditorBase
The EditorBase attribute specifies the base type for the editor. If none is specified, then UITypeEditor is assumed.
Serializer

The Serializer attribute specifies the IPropertySerializer type to use when serializing the property's values. This is equivalent to using a
[PropertySerializerAttribute] on a code property.

OnChanged
The OnChanged attribute specifies the event handler to fire when the property value changes.
DeepLoad

The DeeplLoad attribute is only used on SchemaExplorer objects. When set to true, SchemaExplorer will grab all your schema information in
advance saving make multiple round trips back to your database.

Declaring a Property From the CodeBehind

Declaring a property from code is essentially like creating a property in any class. The most notable options using Attributes to help you describe
your property, it's location, and it's editor.

Example:

private string aliasFilePath;

[Edi t or (typeof (Syst em W ndows. For ns. Desi gn. Fi | eNaneEdi tor),
typeof (Syst em Drawi ng. Desi gn. Ul TypeEditor))]
[Category("01l. General")]
[Optional]
[Def aul t Val ue("")]
[Description("Optional File Path to a table/object alias file.")]
public string AliasFilePath
{
get {return this.aliasFilePath;}
set {this.aliasFilePath = val ue;}

EditorAttribute - Specifies which editor to use in the Property Sheet.
CategoryAttribute - Specifies a Property Sheet group this option belongs to.
OptionalAttribute - If declared the property will be marked as optional.
DefaultValue - Specify the default value for the property.
DescriptionAttribute - Used to create a description for the selected property.
CodeTemplatePropertyAttribute - Has been depreciated.

Declaring an Enumerated Property

Sometimes it's convenient to have a property that limits the user to selecting from a fixed set of choices. For instance, in the SortedList.cst
template, the Accessibility property controls the accessibility of the generated class:

ClassMame
ItemType
ItemValueType
KeyType
Key\WalueType
PairType

Deep Copy
DeepCopy
DeepCopyltem
Mamespaces
ImportMamespace
IncludeMNamespaces
ItemMNamespace
KeyMamespace
TargetMamespace

4 Options

Accessibility

Includelnterfaces

Public
@ Public
() Protectad
O Internal
) ProtectedInternal
) Private

| ItemCustomSearch
KeyCustomSearch

Accessibility
The accessibility of the collect

Generate

—

To accomplish this, you need to take two steps. First, define an enumeration in a <script> block in your code:

<script runat="tenplate">

Publ i ¢ Enum Accessi bilityEnum
[Public]
[Prot ect ed]
[Friend]
[Prot ect edFri end]
[Private]

End Enum

</script>

Second, the Property directive should point to the enumeration:

<%@ Property Name="Accessibility" Type="AccessibilityEnum Category="0Options"
accessibility of the class to be generated." %

Descri pti on="The

That's all there is to it!

Property Validation

Because you can define a property as being optional, you may want to validate the property in your template to determine whether or not the user
has entered a value. For example, you might want to allow generating a class either with a namespace declaration or without, at the user's option.
To do this, you would first define an appropriate optional property:

i <% Property Nane="C assNanespace" Type="System String" Optional ="True" Category="Context" :
H Descri ption="The namespace that the generated class will be a nenber of." % H

In your template, you can check to see whether there's a value in this property at runtime. If so, you want to output the appropriate namespace
declaration. If you're using C# as your template language, you'd do that like this:

<% if (O assNamespace != null && C assNanmespace.Length > 0)
%

{ %nanespace <% Cl assNanmespace %{<% }

<% | f Not O assNanespace |Is Nothing AndAl so C assNanespace. Length > 0 Then % :
Nanmespace <% Cl assNanmespace % H
<% End If %

Escaping ASP.NET Tags

If you're building ASP.NET code with CodeSmith Generator , you'll run into the problem that the <% tags that you want to output to your ASP.NET
code are interpreted by CodeSmith Generator as CodeSmithtags instead. The solution is to escape the starting tags, replacing <% with <%%.
This will be replaced with <% in the output, and not seen by CodeSmith Generator as an opening script tag.

The CodeSmith Generator Objects

Behind the scenes, the CodeSmith Generator engine works by manipulating a rich object model. That object model is exposed for your templates
to work with as well. In this section, we'll explore some of the things that you can do with the CodeSmith Generator objects:

® The CodeTemplate object
® The Progress object
®* The CodeTemplatelnfo object

The CodeTemplate Object

The CodeTemplate class represents your entire template as it's being processed by CodeSmith Generator . You can work with a CodeTemplate
object to interact directly with the CodeSmith Generator engine. For example:

® Use the GetFileName method to specify the default output file name for a template

® Use the Render method to render the output of the template

® Use events of the object to insert your own code into the CodeSmith Generator processing cycle
® Use the Response property to write directly to the template output

Overriding the GetFileName Method

CodeSmith Generator uses the GetFileName method to provide a default output file name for the template when it's called from the CodeSmith
Generator Console Application, Template Editor or Master Template. This is also used in CodeSmith Generator as the default file name if you
save the output of a template, and anywhere else that CodeSmith Generator needs to assign a filename to the output of your template. You can
override this method in your code when you want to build the default file name based on property input or other factors.

For example, if your C# language template contains a property named ClassName, you might include this code to set the default output file name:

http://docs.codesmithtools.com/display/Generator/Incorporating+CodeSmith+into+Your+Build+Process

<% Tenpl at e Language="C#" Tar get Language="Text" %
<% Property Nane="C assNane" Type="System String" Default="C assNanme" %

This tenplate shows of f how to override the GetFil eName nethod.

<script runat="tenpl ate">
public override string GetFil eNane()

{
return Cl assName + ".cs";
}
</script>
Example

Using the template defined below we will show off how changing the database table we generate off of, changes the the file path that the template
is rendered to.

<%@ Tenpl at e Language="C#" Tar get Language="C#" %

<%@ Pr operty Name="Sour ceTabl e" Type="SchemaExpl orer. Tabl eSchema" %
<%@ Assenbl y Nane="SchenmaExpl orer" %

<%@ | nport Nanespace="SchenaExpl orer" %

/1 This tenplate shows off how to override the GetFileNane nmethod using a Database Table.
public class <% SourceTabl e. Nane %
{

<script runat="tenpl ate">
public override string GetFil eNane()

{

return SourceTabl e. Nane + ".cs";
}
</script>

The first step is to create the template above or download the one attached below. Next, choose a table your wish to generate against by
configuring the SourceTable Property via the PropertyGrid. In the screenshot below we are choosing a random database table called Account.
Finally, we click Generate to render the templates contents to a file called Account.cs file name.

' ™y
e Overridden.GetFileMame.Method.cst - Microsoft Visual Studio (Administrator) E@ﬂ

File Edit View Project Build Debug Team Data Tools VisualSVN - Architecture Test ReSharper Analyze
Generator Window Help

DEd » Generate -

Overridden.GetFileMame.Method.cst X Properties

‘i * | g GetFileMame %l HLj Q}lﬁ <

//This template shows off how to override the Get
public class <%= SourceTable.MName %>

{

h

SourceTable Account

=TV = R I Y |

=
=

<script runat="template">
Spublic override strimg GetFileName()

{

=
LY 8-

[y
.

return SourceTable.Mame +

H

slermint

Account.cs X

//This template shows off how to override the GetFilgs:
lpublic class Account

{

b

Ll b

[JY L I

E Output

Done. Ch26

ﬂ You can download this template by clicking here.

Overriding the ParseDefaultValue Method

You may sometimes want to define a property with a default value that cannot be automatically converted from a string. In this case, you'll need to
override the ParseDefaultValue method in your template to handle parsing the default value from the template and assigning it to the property.
This method is called by CodeSmith Generator for each property in the template, and gets passed the property and the default value string from
the template. If you override the method, you can insert whatever custom logic you like to assign values to the property that you care about, while
passing other properties to the base ParseDefaultValue method.

Overriding the Render Method

The CodeTemplate.Render method is where CodeSmith Generator does the actual work of combining metadata with your template to create the
template's output. You can override this method if you want to modify the way that CodeSmith Generator ultimately handles that output. For
example, overriding this event allows you to write your template's output to multiple destinations instead of just to the default output window.
Here's a template that outputs some text to two files at the same time, as well as to CodeSmith's default output window:

<% CodeTenpl at e Language="C#" Tar get Language="Text" Descri pti on="AddTextWiter Denonstration." %
<% | nport Nanespace="System | O %

/1 This tenpl ate denonstrates using the AddTextWiter method

//to output the tenplate results to nultiple |ocations concurrently.

<script runat="tenpl ate">

public override void Render(TextWiter witer)

{
StreanWiter fileWiterl = new StreanWiter(@C: \testl.txt", true);
t hi s. Response. AddTextWiter(fileWiterl);
StreanWiter fileWiter2 = new StreanWiter(@C: \test2.txt", true);
this. Response. AddTextWiter(fileWiter2);
base. Render (writer);
fileWiterl. dose();
fileWiter2.dose();

}

</script>

1. Don't omit the call to the base.Render method. If you forget this, then you won't get the default output!

You also have access to the default TextWriter if you override the Render method. This means that you can write your own
headers or other additional information directly to the output along with the template's output.

Template Events
The CodeTemplate object provides three events that you can use to insert logic during the template processing cycle:

The OnlInit event fires when the template instance is created

The OnPreRender event fires just before the template is rendered

The OnPostRender event fires just after the template is rendered

The OnPropertyChanged event fires after a template property has changed.

The Onlinit Event

The Onlinit event fires when the CodeSmith Generator engine creates an instance of your template. You can override this event to perform any
necessary setup tasks for your template. For instance, suppose your template uses an additional TextWriter to send a copy of its output to a
socket on a remote computer via the Internet. You could override the Onlinit event to check for Internet connectivity, and warn the user that the
template will not succeed if you can't find an open Internet connection when the template is instantiated.

The OnPreRender Event

The OnPreRender event is fired just before the CodeSmith Generator engine merges metadata with your template to produce the template's
output. One use for this event is to perform "sanity checks" on metadata entered by the user. You could, for example, check that a date entered
was within an acceptable range, and change it to the earliest or latest acceptable date if it is not.

.ﬂ. Although you can modify metadata in the OnPreRender event, you cannot prevent the template from being rendered.

The OnPostRender Event

The OnPostRender event is fired after CodeSmith Generator has merged metadata with your template to produce the output. You can use this
event to perform any additional processing you would like after CodeSmith Generator has finished its job. For example, the StoredProcedures.cst
sample template included with CodeSmith Generator uses this event to autoexecute the generated SQL script:

: protected override void OnPost Render(string result) :
P i
: if (this.AutoExecuteScript) :
! { !
H /'l execute the output on the sane database as the source table. H
CodeSni t h. BaseTenpl ates. Scri pt Result scriptResult =
i CodeSni t h. BaseTenpl ates. ScriptUtility. ExecuteScript(i
thi s. Sour ceTabl e. Dat abase. Connecti onStri ng,
resul t,

new System Dat a. Sql C i ent. Sql | nf oMessageEvent Handl er (cn_| nf oMessage)) ;

Trace. Wite(scriptResult.ToString());
}

base. OnPost Render (resul t);

The OnPropertyChanged Events

The OnPropertyChanged event is fired after a template property has been modified. You can use this event to perform any additional processing
or validation for the property that has been changed.

<script runat="tenpl ate">

protected override void OnPropertyChanged(string propertyNane)
{

Response. Wite(propertyName + "has changed");

base. OnPropertyChanged(resul t);

}

</scri pt>

The Response Property

The Response property of the CodeTemplate object returns an instance of the CodeTemplateWriter class. This object represents the actual
response stream for the template output. You can write to the stream programmatically using this property, thus inserting your own output directly
into the generated template. For example:

<%@ CodeTenpl at e Language="C#" Tar get Language="Text" Description="This tenpl ate denonstrates
witing directly to the Response property" %

<% RenderDirect(); %

<script runat="tenpl ate">

public void RenderDirect()

Response. WiteLine("Witten directly to the Response property.");
Response. WiteLine("Hello " + System Environnent. UserNanme + "!");
}

</script>

Useful methods of the CodeTemplateWriter class include:

AddTextWriter - Add an additional output destination

Indent - Increase the indentation level of the output

Unindent - Decrease the indentation level of the output

Write - Write to the generated template without appending a new line
WriteLine - Write to the generated template and append a new line

The Progress Object

The Progress object lets you show a progress bar to the template user when CodeSmith Generator is rendering the template. This is useful when
a template takes a long time to render, as it provides a visual cue to the user that CodeSmith Generator has not ceased responding. If you're
using CodeSmith Explorer, the progress bar is displayed to the left of the Generate button:

Generating 6.

If you're using Visual Studio, the progress bar is displayed in the status bar, to the left of the line and column indicators:

E Map Editor (Ej Template... ‘i Solution E...

v 1 x

H this. Progress. Maxi munval ue = 25; H
: this.Progress. Step = 1; :

The CodeTemplatelnfo Object

The CodeTemplatelnfo object (available through the CodeTemplatelnfo property of the CodeTemplate object) can be used to retrieve a variety of
information about the current template:

Property Returns
CodeBehind Gets the full path to the code-behind file for the template (or an empty string if there is no code-behind file).

ContentHashCode Gets the hash code based on the template content and all template dependencies.

DateCreated Gets the date the template was created.
DateModified Gets the date the template was modified.
Description Gets the description.

DirectoryName Gets the name of the directory the template is located in.

FileName Gets the name of the template file.

FullPath Gets the full path to the template.
Language Gets the template language.
TargetLanguage Gets the target language.

Here's a simple example of using the CodeTemplatelnfo object:

<%@ CodeTenpl at e Language="VB" Tar get Language="Text" Descri pti on="Denonstrates CodeTenpl atelnfo."
%

<% Dunpl nfo() %

<script runat="tenpl ate">

Publ i ¢ Sub Dunpl nfo()

Response. Wi teLine("Tenpl ate: {0}", Me. CodeTenpl at el nfo. Fi | eNane)

Response. WiteLine("Created: {0}", M. CodeTenpl at el nfo. Dat eCr eat ed)

Response. Wi teLi ne("Description: {0}", M. CodeTenpl atel nfo. Descri ption)
Response. Wi telLi ne("Location: {0}", Me. CodeTenpl at el nfo. Ful | Pat h)

Response. Wit eLi ne("Language: {0}", Me. CodeTenpl at el nf 0. Language)

Response. Wit eLi ne("Target Language: {0}", Me. CodeTenpl at el nf 0. Tar get Language)
End Sub

</script>

H Tenpl at e: CodeTenpl at el nf 0. cst H
: Created: 1/1/1973 8:54:19 AM :
: Description: Denpnstrates CodeTenpl at el nf o. :
H Location: C:\CodeTenpl at el nf 0. cst H
Language: VB
i Target Language: Text

Advanced Template Syntax

Advanced Template Syntax covers the following sections:

Understanding CodeSmith Generator's Code Behind Model
Referencing Assemblies

Importing Namespaces

Including External Files

Sharing Common Code

Debugging Templates

Using Master Templates

Writing to Multiple Outputs

Understanding CodeSmith Generator's Code Behind Model

When you're writing a CodeSmith Generator template, you're dealing with two distinct kinds of code:

1. The code being generated
2. The scripting code that controls the generation process

As far as CodeSmith Generator is concerned, the first of these is just text, and can be any language at all: VB, SQL, Fortran, COBOL,
Esperanto...as long as it can be represented by a string of characters, CodeSmith Generator can generate it. This generated code is stored in the
CodeSmith Generator templates, and copied at runtime to the output file, or created on the fly by CodeSmith Generator.

The scripting code is both more and less limited than the generated code. It's more limited in that it can only be VB, C#, or JScript code. But it's
less limited in that you have two choices about where to store it. You can either mix it in to the template directly, storing it in <script> blocks, or

you can store it in separate code behind files. A code behind file is a source code file containing nothing but scripting code that's attached to a

template file by use of attributes within the CodeTemplate directive.

For example, here's a template that makes use of a code behind file:

<%@ CodeTenpl at e Src="VBCodeBehi nd. cst.vb" Inherits="UtilityCodeTenpl ate" Language="VB"

Tar get Language="VB" %

<% Property Nane="C assNane" Type="System String" Category="0Options" Description="The nane of the
generated class." %

' This class generated by CodeSmith on <% DateTi me. Now. ToLongDateString() %

<% Get AccessMdifier(Accessibility) % dass <% C assNane %

Public Sub New()
End Sub

Wite your class here

End d ass

Note that this template makes use of a function GetAccessModifier and a property Accessibility, even though neither one of them is defined in the
template. That's because they're defined in a separate code-behind file. Here are the contents of the code-behind file (VBCodeBehind.cst.vb):

I nports System Conponent Model
I mports CodeSnith. Engi ne

This class contains utility functions that can be
' used across nany tenpl ates

Public Class UtilityCodeTenpl ate
Inherits CodeTenpl ate

Private _Accessibility As AccessibilityEnum = AccessibilityEnum Public

<Cat egory("Options"),
Description("Accessibility of the generated class")> _
Public Property Accessibility As AccessibilityEnum
Cet
Return _Accessibility
End GCet
Set
_Accessibility = val ue
End Set
End Property

: Publ i ¢ Enum Accessi bilityEnum

: [Publ i c]

H [Prot ect ed]

: [Friend]

i [Prot ect edFri end]

[Private]

End Enum

i Publ i c Function Get AccessModifier(ByVal accessibility As AccessibilityEnum) As String
Sel ect accessibility

i Case AccessibilityEnum Public

i Get AccessModi fier = "Public"

i Case Accessi bilityEnum Protected

: Get AccessMbdi fier = "Protected"

H Case AccessibilityEnum Friend

H Get AccessModi fier = "Friend"

! Case Accessi bilityEnum ProtectedFriend
Get AccessModifier = "Protected Friend"
Case AccessibilityEnum Private

i Get AccessModi fier = "Private"

Case El se

Get AccessMbdifier = "Public"

: End Sel ect

i End Function

: End O ass

The CodeTemplate directive ties the code-behind file to the template. The Src attribute of the directive specifies the filename of the code-behind
file, and the Inherits attribute of the directive specifies the class in the file that the template is based on. Note that this class must itself inherit,
directly or indirectly, from CodeSmith.Engine.CodeTemplate.

Because Accessibility is defined as a property of the UtilityCodeTemplate class, CodeSmith Generator includes it in the template's property sheet
when the template is opened in Template Explorer:

. VBCodeBehind.cst - CodeSmith Ge... (52 e
ZHHE 2E 2 e,

4
Accessibility Public =
ClassMame @ Public

) Protected

_Friend

) ProtectedFriend

) Private
Accessibility

Accessibility of the generated class

—

There are two main advantages to moving code to a code-behind file:

1. It makes your templates easier to understand by separating the generated code from the scripting code that drives the generation

process.
2. It makes it possible to easily reuse utility functions across many templates by moving them to shared code-behind files.

lﬂ Click here to download the template and source code file.

Referencing Assemblies

You can use the Assembly directive to reference an external assembly from a template, or to include a source file for dynamic compilation. For
example, CodeSmith Generator ships with an assembly named CodeSmith.CustomProperties.dll that includes custom editors for file names and
string collections. If you'd like to use one of these editors from your own template's property sheet, you need to reference the assembly:

The source code for the CustomProperties assembly is in the Sample folder (E.G., Documents\CodeSmith
Generator\Samples\<Version>\Projects\CSharp\CustomPropertiesSample) of your CodeSmith Generator installation.

Assembly Directive Attributes

There are two attributes that you can supply to the Assembly directive. You must supply one or the other, but not both.

Name

The Nane attribute specifies the file name of an assembly to reference from the current template. The assembly must exist in the Global
Assembly Cache, in the same directory as CodeSmith, in the CodeSmith\bin directory, in the CodeSmith\AddIns directory, or you can specify a
path relative to the template location. If you're working with templates within CodeSmith Generator, the preferred location is the

CodeSmith\AddIns directory.

You can also specify the Assemblies FullName (E.G., ExampleAssembly, Version=0.0.0.0, Culture=neutral,
PublicKeyToken=null)
Src
The Sr ¢ attribute specifies the relative path to a source file that should be dynamically compiled along with the template.
Path

The pat h attribute is a directory path to the assembly being used.

Importing Namespaces

The Import directive is used to import a namespace for use in your template. This lets you refer to types in other assemblies more conveniently.
For instance, when you're using the SchemaExplorer assembly, you probably don't want to have to prefix every type from that assembly with the
name of the assembly. The solution is to include an Import directive in your template along with the Assenbl y directive:

<%@ Assenbl y Name="SchenaExpl orer"” %
<%@ | nport Nanmespace="SchemaExpl orer" %

Import Directive Attributes
There is one required attribute that you must supply to the | nport directive.
Namespace

The Namespace attribute specifies the fully qualified name of the namespace to be imported.

Including External Files

You can cause CodeSmith Generator to compile the contents of an external file into your template by using an include statement. This can be
useful when you have common functions that you want to share between several templates. The include statement takes a single argument which
specifies the relative path from the current template to the file to be included:

<! — #include file="ComonScript.cs" —>

You can also use an include statement to bring in static template content. It doesn't matter what is in the file that you include; CodeSmith
Generator simply inserts the file contents into the template.

1. There are other ways to share common code between templates. In most cases, you should use other methods for
code-sharing, such as the Src attribute on the CodeTenpl at e directive or an Assenbl y directive that imports a source file.
That's because these methods require full .NET class files that are easier to edit in other code editors, while an include
statement will accept malformed source files.

Sharing Common Code

CodeSmith Generator offers several ways to share common code between templates:

® You can place utility functions in a custom template class and reference it in the Inherits attribute of the CodeTemplate directive.

® You can base templates on a common template class by using code-behind files.

® You can compile common functions into an assembly, and reference the assembly using an Assembly directive.

® You can place common functions into a source code file, and reference the file using an Assembly directive.

® You can use sub-templates to share code between templates.

® You can place common code in a separate source file and use ani ncl ude statenent to pull it directly into your
tenpl at e.

Debugging Templates

http://msdn.microsoft.com/en-us/library/system.reflection.assembly.fullname.aspx

CodeSmith Generator supports debugging by using the CLR's Just-in-Time debugger. This article will show some tips and tricks in setting up
CodeSmith Generator templates to use the debugger.

Allow Debugging in Template

The first step to allow debugging a template is to set the Debug attribute on the CodeTemplate Declarative to true.

<%@ CodeTenpl at e Language="C#" Tar get Language="C#" Debug="True" %

Setting a Break Point

In order to get the Just-in-Time debugger to load and stop at a point in your code, you need to use a System.Diagnostics.Debugger.Break()
statement. If you are using a Code Behind, please remember to import the System.Diagnostics namespace.

i Syst em Di agnosti cs. Debugger . Launch(); ;
: Syst em Di agnosti cs. Debugger . Break(); :

‘1, You must call System.Diagnostics.Debugger.Launch(); before your first System.Diagnostics.Debugger.Break() Statement or the
process will crash.

Using the Debugger

When you execute a template and it encounters a break point, you will see the following dialog.

http://msdn.microsoft.com/en-us/library/bb384548.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debugger.break.aspx
http://msdn.microsoft.com/en-us/library/15t15zda.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debugger.launch.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.debugger.break.aspx

’ .
Nicucl Shudio Jnst IR DE[M [

An unhandled Microsoft .MET Framework exception occurred in devenv.exe
[345a3].

Possible

Debuggers:

ew instance of Microso

Set the currently selected debugger as the default.
Manually choose the debugging engines.

Do you want to debug using the selected debugger?

Lyes J[m |

When you see this dialog choose the debugger you want to use and click on the Yes button.

ENESY SN =)

Vizual5VM

-
ea devenv (Debugging) - Microsoft Visual Studio (Administrator)

File Edit View Telerik Theme Project Debug Team Data Architecture

Test ReSharper TeamCity Analyze Window Help

SQLPrompt5 Tools

Generator

Pouw @@ >ELEE| Q= % |3

(@ Debu

=

gging.cst
<¥@ Template Language="C#" Targetlanguage="Text" Debug="True" *:
<#@ Import Namespace="System.Diagnostics” ¥>

<H

System.Diagnostics.Debugger.Launch(};
System.Diagnostics.Debugger.Break();

[ER S

%, I

Ca =1

53

Locals
Mame
@ this
@ writer
¥ control

* B X Call Stack
Type Mame
{_CodeSmith.Debugging_cst} | _CodeSn
{CodeSmith.Engine.CodeTemp System.]
{CodeSmith.Engine.DelegateCc CodeSm

Value Lang
| xzzeuchp.dll!_CodeSmith.Debugging_cst.__Renderl C&

[External Code]

B Threads B Command Window *7 Undo Close i Breakpoints & Immediate Window B Output ﬂ Error List B2 f

Ln3 INS i @

Col3 Ch3

Ready

You can now debug a template just how you would debug any .NET project.

Debugging in Windows Vista or Windows 7
There are some extra steps that need to be completed before using the Just-In-Time debugger in Windows Vista or Windows 7.

First you need to make sure you have all the latest service packs installed. Next, the debugger in Vista will cause CodeSmith Generator to hang
when you finish debugging. You can work around this issue by updating the Just-In-Time debugger setting DbgJITDebugLaunchSetting. The
setting is found in the registry at [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework]. Change the value of
DbgJITDebugLaunchSetting to 2. If you are using a 64bit operating system then you must also set the same key (DbgJITDebugLaunchSetting
) in this folder [HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\.NETFramework] to 2. This will cause the debugger dialog to
be displayed immediately when your code hits a breakpoint. This will also allow control to return to CodeSmith Generator when you continue the
execution of the template from the debugger.

If you are running into issues when trying to debug, run CodeSmith Generator and Visual Studio as an Administrator.

i)

Troubleshooting

If you are having trouble with the debugger, try using the CLR debugger as that tends to work better.

If you are getting the message, "There is no source code available for the current location.”, you need to change the default editor for .cst
files in Visual Studio to be the "Source Code (Text) Editor".

If you are having further issues in Vista, make sure to run CodeSmith Generator with full administrator rights by right clicking and choose
run as administrator.

Outputting Trace and Debug Information

One useful way to gather debugging information when a template is not behaving as you expect is to use the methods of the .NET
System.Diagnostics.Trace and System.Diagnostics.Debug objects. These objects let your code interact with the Debug pane of the Output
window. The two objects have exactly the same members; the only difference between the two is that the System.Diagnostics.Trace object is
active at all times, while the System.Diagnostics.Debug object is only active when you compile your code in debug mode.

http://msdn.microsoft.com/en-us/library/2ac5yxx6(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/6x31ezs1.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.trace(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/6x31ezs1.aspx

This table summarizes some of the useful members of the Trace and Debug objects:

Member Type Description

Assert Method Checks for a condition, and displays a message if the condition is false.
Fail Method Displays an error message

Indent Method Increases the current IndentLevel by one.

IndentLevel Property = Specifies the indent level.

IndentSize Property Specifies the number of spaces in an indent.

Unindent Method Decreases the current IndentLevel by one.

Write Method Writes the given information

Writelf Method Writes the given information only if a condition is true

WriteLine Method Same as Write but appends a new line character after the information.

WriteLinelf ~ Method Same as Writelf but appends a new line character after the information.

Viewing the Compiled Template Source Code

When you generate or compile a template, CodeSmith Generator creates a compiled assembly. Sometimes, when debugging a template's output,
it may be very useful to see the source code of what was compiled.

Viewing the Compiled Template Source Code

You can view the compiled source code of the current template by right clicking on a template in the Solution Explorer and selecting properties.
Next, set the CustomTool property value to TemplateSourceGenerator.

e . e

Custom Tool TemplateSourceGenerator
Custom Tool Mamespar

Now, when you look at your template in Solution Explorer, you will see a DependentUpon file ending with .g.cs or .g.vb.
lﬂl If a CSharp template is named Template.cst, the file will be called Template.g.cs

Finally, click on this generated document (E.G., Template.g.cs) to view the compiled template source code.

Using Master Templates

Sub-templates provide a way for you to organize complex code generation processes from a master template. Just as subroutines in a computer
program let you call bits of logic from a main program flow, sub-templates let you call bits of code generation logic from a master template.

To use a sub-template, you must first register the sub-template in the parent template. You can then merge properties from the sub-template into
the parent template, copy properties from the sub-template to the sub-template, set properties in the sub-template, and render the sub-template.

Here's a video tutorial on Master Templates!

Registering Sub-Templates

http://msdn.microsoft.com/en-us/library/bb629388.aspx

To register a sub-template, you include a Register directive in the master template. You can include as many Register directives as you like, so
one master template can include multiple sub-templates. Sub-templates can be nested.

i <% Regi st er Nane="Header" Tenpl at e="Header.cst" MergeProperties="True" :
H Excl udeProperties="Incl udeMeta" % :

Register Directive Attributes

There are four attributes that you can supply to the Register directive. The Name and Template parameters are required; the others are optional.
Name

The Name attribute specifies the type name for the sub-template in the master template. It can be used to create an instance of the sub-template.
Template

The Template attribute specifies the relative path to the sub-template.

MergeProperties

The MergeProperties attribute specifies whether the properties of the sub-template should be dynamically added to the master template's
properties. If you omit this attribute, it defaults to False.

ExcludeProperties

The ExcludeProperties attribute specifies a comma-delimited list of properties to be excluded from merging to the master template's property list.
You may use * as a wildcard in the property list.

Merging Properties into the Parent Template

To merge the properties of a sub-template with a master template, include the Mer gePr oper ti es="True" attribute in the Regi st er directive
for the sub-template. When you do this, the properties of the sub-template will be displayed on the property sheet of the main template when the
main template is open in CodeSmith Explorer. This makes it easy to prompt for all the properties that are required for the entire code-generation
process on a single property sheet.

<%@ Regi st er Name="SubTenpl at e" Tenpl at e="SubTenpl ate. cst" MergeProperti es="True" %

Copying Properties from the Parent Template

You may want to share properties between a master template and sub-templates. For example, suppose you are working with a set of
database-oriented templates, and each template defines a string property named Ser ver . When you prompt for this property in the master
template, only the master template's copy of the property receives a value.

To set the property in the sub-template, you use the CopyPr oper ti esTo method of the master template. This method matches properties from

the master template to the sub-template on the basis of name and type. If it finds an exact match, it copies the value from the master template to
the sub-template. This code snippet shows how you can use this method:

/1 instantiate the sub-tenplate
Header header = this. Create<Header>();

/1 copy all properties with matching nane and type to the sub-tenplate instance
thi s. CopyPropertiesTo(header);

Setting Properties in a Sub-Template

You can set properties in a sub-template from the main template easily, because they're all available as properties of the instantiated
sub-template object. Here's an example:

/] instantiate the sub-tenplate
Header header = this. Create<Header>();

/'l include the nmeta tag
header. | ncl udeMeta = true;

In this case, IncludeMeta is a boolean property defined with a Pr oper t y directive in the sub-template.

Rendering a Sub-Template

After you've registered a sub-template and set its properties, you can render the sub-template. There are several ways to do this. The first is to
render the sub-template directly to the output of the main template:

H /1 instantiate the sub-tenplate. H
H Header header = this. Create<Header>(); H
/1 render the sub-tenplate to the current output stream
i header. Render (t hi s. Response) ; i

Alternatively, you can render the sub-template to a separate file. This is useful when you want to create multiple output files as part of a single
code-generation process.

: /1l instantiate the sub-tenplate. :
: Header header = this. Create<Header>(); :
i I/ render the sub-tenplate to a separate file.
| header . Render ToFi | e("Sonefile.txt"); |

The RenderToFile method has several overloads that allow for greater control when rending content. The overload shown below will prevent the a
generated file from overwriting an already existing file called Somefile.txt.

/Il instantiate the sub-tenplate.

Header header = this. Create<Header>();

/1l render the sub-tenplate to a separate file.

/1 NOTE: If the file exists then an exception will be thrown.
header. Render ToFi | e("Sonefile.txt", false);

The other overloads allow you to use a Merge Strategies to control how the content should be merged with existing content. Also you can one of
the overloads that takes a string file path or OutputFile to specify the the file that the output is Dependent Upon.

A Sub-Template Example

Here's a simple example so you can see how the various sub-template pieces fit together. This example generates an HTML file from two
templates. First, there's a sub-template that generates an HTML header:

: <%@ CodeTenpl at e Language="C#" Tar get Language="HTM." % :
H <% Property Nane="Title" Type="System String" Optional ="Fal se" Category="0ptions" H
: Descri ption="Page title." % :
i <%@ Property Name="Char Set" Type="System String" Optional ="Fal se" Defaul t="w ndows-1252" i
Cat egory="0Opti ons" Description="Character set for the page." %
<%@ Property Name="Incl udeMet a" Type="System Bool ean" Defaul t="True" Optional ="Fal se"
i Cat egory="0ptions" Description="Include nmeta tags." % i
i <htm>
i <head> i
| <%if (IncludeMeta) { % i
i <meta http-equiv="Content-Type" content="text/htm; charset=<% CharSet %"> :
: <%} % :
H <title><% Title %</title> H
H </ head> H

<%@ CodeTenpl at e Language="C#" Tar get Language="HTM." %

<% Property Nane="Title" Type="System String" Optional ="Fal se" Category="0ptions"
Description="Page title." %

<%@ Property Name="Pl acehol der" Type="System String" Optional ="True" Category="0ptions"
Descri pti on="Mai n pl acehol der text." %

<%@ Regi st er Name="Header" Tenpl at e="Header.cst" MergeProperties="True"

Excl udeProperti es="Incl udeMeta" %

<% CQut put Header (); %

<body>

<hl><% Title %</hl>

<p><% Pl acehol der %</ p>

</ body>

</htm >

<script runat="tenplate">

public void Qutput Header ()

Header header = this. Create<Header>();

/1 include the nmeta tag

header. | ncl udeMeta = true;

/1 copy all properties with matching name and type to the sub-tenplate instance
thi s. CopyPropertiesTo(header);

// render the sub-tenplate to the current output stream

header . Render (t hi s. Response) ;

</scri pt>

When you open the master template, the property sheet shows the Title and Placeholder properties defined in the master template, as well as the
CharSet property defined in the sub-template (because of the MergeProperties attribute), but not the IncludeMeta property (because of the
ExcludeProperties attribute):

The template's output seamlessly merges the output of the sub-template and the output of the main template:

Properties = X
d
Char5et windows-1252
Placeholder Lorem Ipsit
Title My Web Page
Title
Page title.

: <htni > i
! <head> i
! <meta http-equi v="Content-Type" content="text/htm ; charset=w ndows-1252"> !
i <title>MWy Web Page</title> i
. </head> E
i <body> i
: <hl>MWy Web Page</hl> :
i <p>Lorem I psit</p> E
i </body> E
</htm >

Writing to Multiple Outputs

CodeSmith Generator lets you send the same output to multiple destinations at one time. To do this, you use the AddText Wi t er method of the
CodeSmith Generator Response object. This method lets you add additional Text Wi t er objects (or objects of any class derived from

Text Wi t er) to the list that CodeSmith Generator renders its output to. For example, here's a template that outputs some text to two files at the
same time, as well as to CodeSmith Generator 's default output window:

<%@ CodeTenpl at e Language="C#" Tar get Language="Text" Descri pti on="AddText Witer Denonstration." %
<%@ | rport Nanmespace="System | O %

/1 This tenpl ate denponstrates using the AddText Witer nethod

//to output the tenplate results to multiple |locations concurrently.

<script runat="tenpl ate">

public override void Render(TextWiter witer)

{
StreanWiter fileWiterl = new StreanWiter(@C \testl.txt", true);
thi s. Response. AddTextWiter(fileWiterl);
StreanWiter fileWiter2 = new StreamWiter(@C: \test2.txt", true);
thi s. Response. AddText Witer(fileWiter2);
base. Render (writer);
fileWiterl. Cose();
fileWiter2. Cose();
}
</script>

This technique is quite general. You could have a TextWriter that streams to a socket or to the Windows clipboard or to file or to a database or to
your source code repository or to any other destination you like.

This technique is useful for generating multiple identical copies of the same file. When you need to generate multiple different
files as part of a single code-generation process, you should use one sub-template for each file. Call the sub-templates from a
master template and use the Render ToFi | e method to output each sub-template.

Driving Templates with Metadata

One of the key features of CodeSmith Generator is that you can use many types of metadata in your templates. Template metadata provides the
means for users to interact with templates and customize the output of those templates. You have many choices when defining the metadata in a
template:

® You can use any .NET type

® You can use CodeSmith Generator's SchemaExplorer to interact with a database

® You can use the XML support

® You can build your own custom metadata sources, complete with designer and property set support

Using .NET Types

The easiest way to define metadata is to use one of the scalar .NET types such as System.String or System.Boolean. To define a property using
a .NET type, you use a Property directive. CodeSmith Generator automatically allows editing such scalar types directly in its property sheet when
the user executes a template.

Advanced: Using Extended Properties to Define Custom Metadata

Using SchemaExplorer

SchemaExplorer is CodeSmith Generator's built-in interface for working with metadata from databases. You can use the classes in
SchemaExplorer either programmatically or interactively; often, you'll combine the two approaches. For example, you may want to allow the user
to interactively select a database, and then programmatically build a list of all of the tables in the selected database. Here's a template that
demonstrates using SchemaExplorer for this purpose:

<% CodeTenpl at e Language="C#" Target Language="Text" Description="List all database tables" %
<%@ Pr operty Name="Sour ceDat abase" Type="SchenmaExpl or er. Dat abaseSchema" Cat egory="Cont ext"
Descri pti on="Dat abase containing the tables." %
<%@ Assenbl y Name="SchenaExpl orer" %
<%@ | nport Nanmespace="SchemaExpl orer" %
Tabl es in database "<% SourceDat abase %":
<% for (int i = 0; i < SourceDatabase. Tabl es. Count; i++) { %
<% Sour ceDat abase. Tabl es[i]. Nane %
<%} %

Before you can execute this template, you must supply a value for the SourceDatabase property. When you place your cursor in the property
sheet row for this property, CodeSmith Generator will display a builder button (highlighted in green), indicating that there is an external editor
hooked up for this property. CodeSmith Generator automatically uses editors built into SchemaExplorer:

Schematxplorer.cst - CodeSmith GE...I. = | |_£h
EEICEEEYT XS |

SourceDatabase

Clicking the builder button opens the Database Picker dialog box. A dropdown list lets you choose from all of the data sources that you have
previously defined on your computer. There's also a builder button to define a new data source:

Database Picker @

Data Source: | VistaDEPetshop -] E]

Select || Cancel |

If you click the builder button, SchemaExplorer opens the Data Source Manager dialog box. Here you can see the type of each existing data
source, and manage your data sources. You can copy, add, edit, or remove data sources from this dialog box.

Data Source Manager @
Mame Type
VistaDBPetshop Vista DB SchemaProwvi...
Copy][Add][Edit][Remave][Close

If you choose to add a new data source, SchemaExplorer opens the Data Source dialog box. To add a new data source, you must provide a
name for the new data source, then select a provider type and type in a connection string.

Data Source @
Mame: VistaDBPetshop
Prowider Type: VistaDBSchemaProvider -]
Connection String: - D
Test || OK || Cancel

It's worth noting that CodeSmith Generator ships with many database providers including the following:

ADOXSchemaProvider
ISeriesSchemaProvider
MySQLSchemaProvider
OracleSchemaProvider
PostgreSQLSchemaProvider
SQLAnywhereSchemaProvider
SqlCompactSchemaProvider
SQLiteSchemaProvider
SqlSchemaProvider
VistaDBSchemaProvider

Here's a sample of the output for this template when it's used with the SQL Server Northwind sample database:

Tabl es in database "Northw nd":
Orders
Conponent Types
Product s
Order Details
Cust oner Cust orrer Deno
Cust oner Denpgr aphi cs
Regi on
Territories
Enpl oyeeTerritories
Enpl oyees
Cat egori es
Custoners
Shi pper s
Suppliers

After the user specifies the SourceDatabase, CodeSmith Generator is able to use it as the root of an object model of the entire database.

Check out this video for more information:

Refer to the CodeSmith Generator APl Reference for a complete listing of the classes and members within the SchemaExplorer
library.

Advanced: Using Extended Properties to Define Custom Metadata

The SchemaExplorer Object Model

Starting with a DatabaseSchema object, you can drill down into an object model to obtain further information about the contents of a database
selected by the user. This diagram shows the major components of the SchemaExplorer object model.

Database

| |
Commands Tables Views

Parameters Columns

l l
Columns Indexes Keys

SchemaExplorer provides a rich set of collections, objects, and properties that correspond to this object model. For example, the
Dat abaseSchena object exposes a Conmands property, through which you can retrieve a CommandSchemaCol | ect i on object. The I t em

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/Manage_Extended_Properties_Through_Schema_Explorer.html

property of this object gives you access to individual CommandScherma objects, each of which corresponds to a single command in the database.
The properties of the Command object allow you to explore the details of the command, retrieving the metadata that you might need to build code
based on the command.

Connection Strings

Valid connection strings in Schema Explorer depend on the provider you're using for a given connection:
If you're using the SqglSchemaProvider, connection strings follow the format used by the .NET SqlConnection.ConnectionString property.
If you're using the ADOXSchemaProvider, connection strings follow the format used by the ADO ConnectionString property.

If you're using the OracleSchemaProvider, please be sure to check out the link below for creating a connection string as well as the following
how-to article.

If you're using the PostgreSchemaProvider, please make sure the following statement is included in your ConnectionString: Preload Reader =
true;

For all SchemaProviders, please be sure to use the proper ConnectionString for the Database Provider you are using. A great resource for
building database ConnectionStrings can be found here.

Choosing Objects

SchemaExplorer implements designers for four other database object types. These are useful when you need to let users select a particular
object or set of objects within a database as part of your template metadata.

TableSchema and TableSchemacCollection
The Tabl eSchema editor allows selecting a single table:

: <%@ Pr operty Name="Sour ceTabl e" Type="SchemaExpl orer. Tabl eScherma" Cat egor y="Dat abase" :
: Description="Select a table." % :

i <% Property Nane="SourceTabl es" Type="SchemaExpl orer. Tabl eSchemaCol | ecti on" Cat egor y="Dat abase" :
H Description="Sel ect a set of tables." % H

A property using either of these types will display the Table Picker when the user clicks the Build button in the Properties window. If the property
uses the TableSchema class, the user can select a single object. If the property uses the Tabl eSchemaCol | ecti on class, the user can use
Ctrl+click and Shift+click to select multiple objects.

http://msdn.microsoft.com/en-us/library/f28szy5b(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ee252362(v=BTS.10).aspx
http://community.codesmithtools.com/CodeSmith_Community/b/blake/archive/2008/11/04/tips-amp-tricks-connecting-to-an-oracle-schema-with-codesmith.aspx
http://connectionstrings.com/

Table Picker =

Data Source: | VistaDEPetshop -] E]

Tables

Account
Cart
Categary
Irvertaony
ftem
Linettem
Orders
OrderStatus
Product
Profiles
Supplier

Select || Cancel

ViewSchema and ViewSchemacCollection
The Vi ewSchema editor allows selecting a single view:

: <%@ Property Name="SourceVi ew' Type="SchenmaExpl orer. Vi ewSchema" Category="Dat abase" :
: Description="Select a view." % :

: <%@ Pr operty Name="Sour ceVi ews" Type="SchemaExpl orer. Vi ewSchemaCol | ecti on" Cat egor y="Dat abase" :
: Description="Sel ect a set of views." % :

A property using either of these types will display the Vi ewPi cker when the user clicks the Build button in the Properties window. If the property
uses the ViewSchema class, the user can select a single object. If the property uses the Vi ewSchemaCol | ect i on class, the user can use
Ctrl+click and Shift+click to select multiple objects.

View Picker @

Data Source: [‘u‘istaDEPetshnp v]E]

Views

vwALLOrders BEdendedinfo
vwinventoryCument

Select || Cancel

CommandSchema and CommandSchemacCollection
The CommandSchena editor allows selecting a single command:

: <% Property Nane="Sour ceCommand" Type="SchemaExpl or er. CommandSchema" Cat egory="Dat abase" :
: Descri ption="Sel ect a conmmand." % :

i <% Property Nane="Sour ceCommands" Type="SchemaExpl or er. CommandSchenaCol | ecti on" :
: Cat egor y="Dat abase" Description="Select a set of conmands." % :

A property using either of these types will display the Command Picker when the user clicks the Build button in the Properties window. If the
property uses the CommandSchema class, the user can select a single object. If the property uses the ConmandSchenaCol | ect i on class, the
user can use Ctrl+click and Shift+click to select multiple objects.

Command Picker e

Data Source: | PetShop -] [:]

Commands

usp_Product_GetBelowlnventary (dbo)
usp_Profiles_GetActiveProfiles {dbo)

ColumnSchema and ColumnSchemacCollection

The Col utmSchenma editor allows selecting a single command:

<% Property Nane="Sour ceCol um" Type="SchemaExpl orer. Col uymSchema" Cat egory="Dat abase"
Description="Select a colum." %

<% Property Nane="Sour ceCol ums" Type="SchemaExpl orer. Col umSchenmaCol | ecti on" Cat egor y="Dat abase"
Description="Select a set of colums." %

A property using either of these types will display the Column Picker when the user clicks the Build button in the Properties window. If the property
uses the ColumnSchema class, the user can select a single object. If the property uses the ColumnSchemacCollection class, the user can check
the columns to select multiple objects.

Column Picker 3|
Data Source: [FaShup v][:]
Columns

M invertory (dbo) -
= [H] tem (dbo)

temld o
-] Productd
-[] ListPrice
- [] UnitCost
-] Supplier
- [] Status
MName
|:| Image
&[] Linekem (dbo) L

m

Sorting Collections

SchemaExplorer retrieves the various collections in the order that the database presents them. For all practical purposes, this means that the
collections are in a random order. Often, you'll want a collection sorted by name instead. This is easily accomplished by creating a second
collection of the same type and using the Sort method:

: Tabl eSchenmaCol | ecti on tabl es = new Tabl eSchemaCol | ecti on(Sour ceDat abase. Tabl es) ; :
: tabl es. Sort (new PropertyConparer ("Nane")); :

After running this code, the new t abl es collection will contain all of the tables from the source database, sorted by name.

Using Extended Properties

SchemaExplorer allows you to retrieve a great deal of information about objects within your database. If you're using a RDBMS (E.G., SQL
Server) database, you'll find some of the most useful information in the ExtendedProperties collections of the various objects. These collections
contain the extended properties that the RDBMS defines for database objects.

Example

For example, SQL Server defines an extended property that tells you whether a table column is an identity column, which you can retrieve with
the "CS_lIsldentity" extended property key as shown below.

lﬂ The ExtendedProperties collection is a dictionary defined with a string key and an object value (E.G., List<string, object>).

Identity Field = <% foreach(Col uimSchema cs in SourceTabl e. Col ums) { :
if(((bool)cs. ExtendedProperties["CS_Isldentity"].Value) == true) { :
Response. Wite(cs. Nane);

}

A better way to retreive this value would be to use the SchemaExplorer.ExtendedPropertyNames utility class and ExtendedProperty Extension
methods.

lﬂl To use any of the SchemaExplorer Extension methods, please be sure to import the SchemaExplorer.Extensions namespace.

The SchemaExplorer.ExtendedPropertyNames class contains string constants of all Schema Provider defined extended properties. This gives
you Intellisense for extended property key names as well as compile time checking! The The below code sample has been updated to use this
utility class. The example below will show off how to use Extended Properties GetByKey Extension method for retrieving and converting extended
property values to the correct type.

ldentity Field = <% foreach(Col umSchema cs in SourceTabl e. Col ums) { :

i f (cs. Ext endedProperti es. Get ByKey<bool >(SchemaExpl or er . Ext endedPr opert yNanmes. | sl dentity) == H
true) { i
Response. Wite(cs. Nane);

Default Extended Properties

CodeSmith Generator defines standard extended properties for table columns, view columns, and command parameters:

lﬂl The ExtendedProperties collection is a dictionary defined with a string key and an object value (E.G., List<string, object>).

Table Column

http://msdn.microsoft.com/en-us/library/ms186775.aspx
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/5d664b18-7a28-1210-813f-a5f56f92c8e9.htm
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/ab892bc6-83a6-e792-6dc6-7165234d7d90.htm
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/5d664b18-7a28-1210-813f-a5f56f92c8e9.htm

Extended Property Key = SchemaExplorer.ExtendedPropertyName Property Name Description

CS_Description Description The Description

CS_IsRowGuidCol IsRowGuidColumn The Column is a Row Guid
CS_lIsldentity Isldentity Identity Column

CS_IsComputed IsComputed Computed Column or Index
CS_lIsDeterministic IsDeterministic Column is Deterministic
CS_ldentitySeed IdentitySeed Identity Seed

CS_ldentitylncrement Identitylncrement Identity Increment

CS_SystemType SystemType The System Type (E.G., System.String)
CS_Default DefaultValue The default value

View Column

Extended Property Key SchemaExplorer.ExtendedPropertyName Property Name Description

CS_Description Description The Description
CS_IsComputed IsComputed Computed Column or Index
CS_IsDeterministic IsDeterministic Column is Deterministic

Command Parameter

Extended Property Key = SchemaExplorer.ExtendedPropertyName Property Name Description
CS_Description Description The Description

CS_Default DefaultValue The default value

In addition, every object has a CS_Description extended property, but the standard Description property provides a shortcut to the same
information.

Extended Property Key = SchemaExplorer.ExtendedPropertyName Property Name Description

CS_Description Description The Description

Using CodeSmith to Manage Extended Properties
CodeSmith Generator offers an easy way to manage Extended Properties through the Template Explorer's SchemaExplorer Control.

Manually Adding Extended Properties

You can also create your own extended properties within your SQL Server database by using the sp_addextendedproperty stored procedure. For
example, this T-SQL statement adds a Caption property to the ID column of the Customers table:

sp_addext endedproperty 'caption', 'Customer ID, 'user', dbo, 'table', Custoners, 'colum', id

After you execute this statement in your SQL Server database, the Caption property will show up in this column's ExtendedProperties collection in
CodeSmith Generator.

XML Support

CodeSmith Generator allows you to store metadata in external XML files. To incorporate XML metadata in your templates, you use an
XmilProperty directive:

<%@ Xm Property Nane="PurchaseOrder" Schema="PO xsd" Optional ="Fal se" Category="Data"
Descri ption="Purchase Order to generate packing list for." %

XmlProperty Directive Attributes
The XmlProperty directive has six possible attributes. The Name attribute is required, and the other attributes are optional.

Name

The Nane attribute is used as the name of the property when it is displayed on the template's property sheet in CodeSmith Explorer. This is also
the variable name that is used to store the value of the property within the template. This must be a legal variable name within the template's
language. For example, if the template uses C# as its language, then the name must follow the rules for C# variables. If a schema is specified, the

variable will point to a strongly typed object model that CodeSmith generates based on the schema. If no schema is specified, it will point to an
instance of the Xm Docunent class.

Schema

The Schema attribute specifies an XSD schema to be used to parse the XML file chosen by the user at runtime.

1. Specifying a schema file allows CodeSmith to supply IntelliSense help for the XmlIProperty instance within your template.

If you do not specify a value for the Schema attribute, then the user can select any XML document at runtime, and the property
will return an instance of the XmIDocument class.

Default

The Default attribute is used to set the default value for this property. If you omit this attribute, then CodeSmith Generator does not supply a
default value for the property.

Category

The Category attribute specifies what category this property should appear under in the CodeSmith Explorer property sheet. If you omit this
attribute, CodeSmith Generator will place the property in a category named Misc.

Description

The Description attribute supplies descriptive text to be displayed at the bottom of the property sheet when this property is selected.

Optional

The Optional attribute specifies whether or not this property is optional. If a user does not specify a parameter that is not optional then CodeSmith
Generator will not let them proceed. A value of true means that a value for the property is not required, and a value of false means that a value for
the property is required.

OnChanged

The OnChanged attribute specifies the event handler to fire when the XmlProperty value changes.

RootElement

The RootElement attribute specifies the relative or full path to the locate the Root Xml Element.

1. XmlProperty does not support all variations and features of XSD schemas. In general, if an XSD schema can be successfully
loaded into the Visual Studio .NET schema designer then it should work in CodeSmith Generator.

Additional Information

You can also check out this video on XML Properties for more information!

XML Property Examples
XML Property With a Schema

Here's an example of using the XmlIProperty directive with a schema. Consider first this XSD file, which defines a simple purchase order structure:

H <?xm version="1.0" encodi ng="UTF-8"?> H
: <xs:schema t arget Namespace=htt p://ww. codesmi t ht ool s. conf PO :
: xm ns: xs=http://ww. w3. or g/ 2001/ XM_Schena :
i xm ns=http://ww. codesni t ht ool s. conl PO i
; el ement For nDef aul t ="qual i fi ed" attributeFornDefaul t="unqualified"> ;
; <xs: el enent nane="PurchaseCOrder"> ;
: <xs: conpl exType> :
f <xs: sequence> f
f <xs: el enent name="PONunber" type="xs:string"/> f
i <xs: el enent nanme="Cust oner Nane" type="xs:string"/> i
! <xs: el ement name="CustonerCity" type="xs:string"/> !
i <xs:el ement name="Custoner State" type="xs:string"/> i
H <xs:el ement name="Itens"> H
H <xs: conpl exType> H
: <xs:sequence> :
; <xs: el ement nanme="Itenl' nmaxOccurs="unbounded"> ;
; <xs: conpl exType> ;
: <xs:attribute nane="ItenmNunber" type="xs:string" use="required"/>

f <xs:attribute nane="Quantity" type="xs:integer" use="required"/> f
f </ xs: conpl exType> f
: </ xs: el enent > :
5 </ xs: sequence> 5
i </ xs: conpl exType> i
: </ xs: el enent > i
i </ xs: sequence> :
: </ xs: conpl exType> :
i </ xs: el ement > i
! </xs:schema> ;

<%@ CodeTenpl at e Language="C#" Tar get Language="Text" Description="Create packing list from XM PO "
%

<%@ Xm Property Nane="PurchaseOrder" Schema="PO xsd" Optional ="Fal se" Category="Data"

Descri ption="Purchase Order to generate packing list for." %

Packi ng Li st

ref: PO#<% PurchaseOrder. PONunber %

Ship To

<% Pur chaseOrder. Cust oner Nane %

<% PurchaseOrder. CustonerCity %, <% PurchaseOrder.CustonerState %

Contents:

<% for (int i = 0; i < PurchaseOrder.Itens.Count; i++) { %

<% PurchaseOrder.ltens[i].|temNunber %, Quantity <% PurchaseOrder.ltens[i].Qantity %
<%} %

At run time, the PurchaseOrder property will display a builder button in the CodeSmith Generator user interface. Clicking this button opens a file
open dialog box which allows the user to browse for an appropriate XML file to use as a metadata source:

-
&2 Select an XML file: S
T
uu | . =« Examples » Xml » CSharp - |ﬂ~|| Search CSharp P|
Organize « Mew folder =~ [@
i Marme Date modified Type
. Libraries .
| MerthwindMap.ml 9/25/2009 4:45 PM XML Document
@ Documents —
J’ . || SamplePurchaseOrder.xml 9/25/2009 4:45 PM XML Document
usic
(=] Pictures
B videos
#&) Homegroup
1M Computer =
£, Local Disk (C)
i"! Metwork
I~ [Tl | 3
File name: SamplePurchaseCrderxml - [KMHHS (*xml} "l
| Open IV| l Cancel]

Selecting an appropriate XML file generates the packing list. For example, the user might choose this XML file:

<?xm version="1.0" encodi ng="UTF-8"?>
<Pur chaseOrder xm ns=http://ww. codesnithtools.com PO
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<PONunber >5271</ PONunber >
<Cust oner Name>John Nel son</ Cust orrer Nane>
<Cust oner Ci t y>Ganonet t a</ Cust oner Ci t y>
<Cust oner St at e>MS</ Cust oner St at e>
<ltems>
<Item |t emNunber =" HVMB5" Quantity="12"/>
<ltem |temNunber="JR82" Quantity="4"/>
<ltem ItemNunber="PR43" Quantity="6"/>
</ltems>
</ Pur chaseOr der >

With this resulting generated packing list:

Packi ng Li st

ref: PO#5271
Ship To:

John Nel son
Ganponetta, M
Contents:

HVB5, Quantity 12
JR82, Quantity 4
PR43, Quantity 6

XML Property Without a Schema

Here's an example of using the Xm Pr oper t y directive without a schema. Here's a template that can accept any XML file at runtime:

<% CodeTenpl at e Language="VB" Tar get Language="Text" Description="List top-level nodes in an XM
file." %
<%@ Xm Property Nane="TargetFile" Optional ="Fal se" Category="Data" Description="XM file to
iterate." %
<%@ Assenbl y Name="System Xm " %
<%@ | nport Nanmespace="System Xm " %
Top-1 evel nodes:
<% Di m curr Node as Xnl Node
currNode = TargetFile. Docunent El enent. FirstChild
Do Until currNode I's Nothi ng%
<% curr Node. | nner Xml %
<% currNode = currNode. Next Si bl i ng()
Loop %

This template doesn't define a schema for the Tar get Fi | e property, so that property is presented to the template as an Xm Docunent object.
Thus, it can be processed with the standard XML DOM methods and properties such as Fi r st Chi | d and Next Si bl i ng. In this case, the
template simply loops through the top-level nodes of the document and copies them to the output. For example, if you choose this document as
the Target Fi |l e:

<?xm version="1.0" encodi ng="UTF-8"?>

<Books>
<Book>UM. 2.0 In a Nutshel | </ Book>
<Book>The Best Software Wi ting</Book>
<Book>Coder to Devel oper </ Book>
<Book>Code Conpl et e</ Book>

</ Books>

Top-1 evel nodes:

UML 2.0 In a Nutshell

The Best Software Witing
Coder to Devel oper

Code Conpl ete

Custom Metadata Sources

When you need something beyond the built-in support for .NET types, SchemaExplorer, and XML properties, it's time to explore custom metadata
sources. CodeSmith Generator lets you hook just about anything you like to the property grid to use as a metadata source. You'll need to do
some coding to enable your custom metadata sources to work smoothly with the rest of CodeSmith Generator, though. The two tasks you may
need to accomplish are:

® Adding designer support
® Adding property set support

Adding Designer Support

If your custom metadata requires a complex user interface (anything beyond the simple text edit control provided by the property grid) to edit,
you'll need to add designer support. Otherwise, there won't be any way for the user to enter values for properties that make use of your metadata
type. To add designer support, you'll need to build an editor for your type or use an existing UITypeEditor. An editor is simply a class that
subclasses the .NET System.Drawing.Design.UITypeEditor class.

You can find the source code for several CodeSmith Generator custom designers in your extracted template folder. The default
template folder is located in the My Documents folder (Documents\CodeSmith
Generator\Samples\<Version>\Projects\CSharp\CustomPropertiesSample\

For example, DropDownEditorProperty is a class that wraps up a string and a boolean value together into a single piece of metadata. To edit this
data, it provides a class, DropDownEditorPropertyEditor, which derives from UITypeEditor. The declaration of DropDownEditorProperty is
decorated to indicate that this is the editor class that CodeSmith Generator should use in the property grid:

http://msdn.microsoft.com/en-us/library/system.drawing.design.uitypeeditor.aspx

[Edi t or (t ypeof (CodeSmi t h. Sanpl es. Dr opDownEdi t or PropertyEdi tor), :
t ypeof (Syst em Drawi ng. Desi gn. Ul TypeEdi tor))] H
public class DropDownEditorProperty

In a template, you can use this metadata type just like any other (although you need to remember to reference its assembly, because CodeSmith
Generator doesn't know about this type by default):

<%@ Pr operty Name="Dr opDownEdi t or Property" Type="CodeSm th. Sanpl es. Dr opDownEdi t or Property" :
Cat egory="0Opti ons" Description="This property uses a custom dropdown editor." % :
<%@ Assenbl y Name="Sanpl eCust onProperties" %

When the user wants to edit the DropDownEditProperty and clicks in the property sheet, CodeSmith Generator will display the custom designer:

{% CodeSmith - CustomPropertiesSamplecst | & (=] 29
E Options
DropDownEditorProperty Hello Word!: False E
MaodalEditorProperty
Hello Word!
[] Sample Boclean
DropDownEditorProperty
This property uses a custom dropdown editor.
[s] [Generate] [Cancel

ﬂ For more information on building custom designers please read Building custom UlTypeEditors.

Using an predefined UITypeEditor

Here is a compiled list of all UITypeEditors that CodeSmith Generator ships with.

Name Assembly Obsolete Description

CodeSmith.Engine. CodeSmith.Engine Allows you to browse for a CSharp or VisualBasic class file.
CodeFileParserPicker

CodeSmith.Engine. CodeSmith.Engine This type editor can be used on a class that supports XML
XmlPropertyFilePicker serialization to allow the user to pick an XML file and have that
XML file deserialized into the target class.

CodeSmith.Engine. CodeSmith.Engine Allows you to browse for an XSD Schema.
XmlSchemaFilePicker

CodeSmith.CustomProperties. CodeSmith.CustomProperties Allows you to browse for an assembly.
AssemblyFilePicker

CodeSmith.CustomProperties. CodeSmith.CustomProperties Allows you to browse for a file.
FileNameEditor

CodeSmith.CustomProperties. CodeSmith.CustomProperties = YES Allows you to quickly edit an NameValueCollection.
NameValueCollectionEditor

CodeSmith.CustomProperties. CodeSmith.CustomProperties = YES Allows you quickly edit a string collection.
StringCollectionEditor

CodeSmith.CustomProperties. = CodeSmith.CustomProperties Allows you to browse for an Xml file.
XmlSerializedFilePicker

lﬂl It is worth noting that the .NET Framework also ships with many built-in UITypeEditors.

Adding Property Set Support

By default, CodeSmith Generator will try to serialize your custom metadata types automatically using the JSON.NET library. So for most
situations, you won't need to do anything special to add CodeSmith Generator Project property serialization support.

If your custom metadata type does not work by default or requires special formatting to save to XML (for instance, it includes information that you
want to format in a particular way in the XML file), you'll need to add a property serializer. Otherwise, there won't be any way for the user to save
an XML property set file that includes an instance of your metadata type. To add property set support, you'll need to build a serializer for your
type. A serializer is simply a class that implements the CodeSmith.IPropertySerializer interface.

You can find the source code for several CodeSmith Generator custom designers in your extracted template folder. The default
template folder is located in the My Documents folder (Documents\CodeSmith
Generator\Samples\<Version>\Projects\CSharp\CustomPropertiesSample\

For example, DropDownEditorProperty is a class that wraps up a string and a boolean value together into a single piece of metadata. To serialize
this data, it provides a class, DropDownEditorPropertySerializer, which implements IPropertySerializer. The declaration of
DropDownEditorProperty is decorated to indicate that this is the serializer class that CodeSmith Generator should use:

[PropertySerializer(typeof (CodeSm th. Sanpl es. Dr opDownEdi t or PropertySeri alizer))|PropertySerializer(type
cl ass DropDownEdi t or Property

Generating from Source Code

One of the awesome features of CodeSmith Generator is that you can generate from any kind of metadata. A new feature to CodeSmith
Generator is the CodeFileParser which allows you to generate off of existing source code. The CodeSmith.CodeFileParser class can parse any
string or file and return an easy to use DOM object.

Requirements

In order for the CodeFileParser requires that the passed in string or file contents contain valid CSharp or VisualBasic code. The CodeFileParser
uses the public NRefactory libraries under the hood to create the DOM object.

The CodeFileParser Object

It is very easy to create a new CodeFileParser Instance in code by using the overloaded constructors below. Also, you can use the
CodeFileParser by creating a template property. All you need to do is add a new Property Directive with the type CodeSmith.CodeFileParser to
your template.

/1l There are overloads that don't require basePath or parseMet hodBodi es.
public CodeFil eParser(string fileName, string basePath, bool parseMethodBodi es)

/1 There are overloads that don't require parseMethodBodi es.
public CodeFil eParser(string source, SupportedLanguage |anguage, bool parseMet hodBodi es)

The Selection Methods

Most of the methods in NRefactory return position information in the form of Location objects, which, while very descriptive, are not the easiest
thing to use when trying to take substrings or selections from the existing code.

Because this can be very important when using the object DOM to assist with code generation, we have added several methods to assist with
getting substrings and selections; these methods take in Location objects and return strings.

http://forums.asp.net/post/1815965.aspx
http://www.icsharpcode.net/OpenSource/SD/Download/

public string GetSectionFronttart(Location end) :
public string GetSectionToEnd(Location start) :
public string GetSection(Location start, Location end)

The CodeDomCompilationUnit

To quick and easily walk the DOM, the CodeFileParser exposes a (lazy loaded) property that returns System.CodeDom.CodeCompileUnit object.
This is a standard .NET object that contains a complete code graph; this object is the quickest and easiest way to traverse your metadata.
For more information about the CodeCompileUnit, please check out MSDN article.

The Visitor

When more advanced or customized information is required, the CodeFileParser exposes the CompilationUnit object, which is capable of taking
in a visitor object to traverse the DOM and bring back specific data.
This is an NRefactory feature, and it only requires that your visitor object implement the AbstractAstVisitor class.

Example

We are already using the CodeFileParser in CodeSmith Generator and our Plinqo templates! In CodeSmith Generator we have implemented the
CodeFileParser in our InsertClassMergeStrategy; it allows us to parse the existing code file and determine where we need to insert our new
content. In PLINQO for Ling-to-SQL we use the CodeFileParser to assist with our MetaData class merge; it allows us to make a map of all the
properties in that class and then preserve their attributes during regeneration.

<% CodeTenpl at e Language="C#" Tar get Language="Text" Debug="Fal se" Conpil er Versi on="v3.5" %
<%@ Property Category="2.C ass" Name="TheFi|e" Type="CodeFil eParser" Optional ="Fal se" %
<%@ Assenbl y Name="CodeSnit h. CodeParser" %

<%@ | nport Nanmespace="Syst em CodeDont %

<% f or each(CodeNanespace n in TheFil e. CodeDonConpi | ati onUni t. Nanespaces) { %
! Nanespace: <% n.Nane % :
<% f or each(CodeTypeDecl aration t in n.Types) { %
Type: <% t.Name %
' <% f or each(CodeTypeMenber min t.Menbers) { % :
! Merber: <% m Nane % i
: <%} % :
i <%} % ;
H <%} % :

Advanced Topics

Advanced Topics covers the following sections:

Upgrading CodeSmith Generator

Using the CodeSmith Generator API

Auto Executing Generated SQL Scripts

Merge Strategies

Active vs. Passive Generation

Template Caching

Building a Custom Schema Provider for SchemaExplorer
Using CodeSmith.CustomProperties
CodeSmith.BaseTemplates

Building a custom UITypeEditor

Setting up a DataDirectory for use in Connection Strings
Version Control Support

Auto Executing Generated SQL Scripts

If you're generating SQL scripts, it can be useful to execute those scripts right after you've generated them. That way, when you generate scripts
that build new objects in a database, you can finish the process by actually building the objects.

The BaseTemplates.ScriptULtility object provides an ExecuteScript method that you can use for this purpose. If you want to execute the script
immediately after it's been generated, it's convenient to override the template's OnPostRender method to do so. Here's an example of doing so,

http://msdn.microsoft.com/en-us/library/system.codedom.codecompileunit.aspx

adapted from the StoredProcedures.cst template that ships with CodeSmith Generator:

protected override void OnPost Render (string result)

{

/] execute the output on the sanme database as the source table.
CodeSni t h. BaseTenpl ates. Scri pt Result scriptResult =

result, new System Data. Sql dient. Sql | nfoMessageEvent Handl er (cn_I nf oMessage)) ;
Trace. Wite(scriptResult.ToString());

CodeSni t h. BaseTenpl ates. ScriptUtility. ExecuteScript(this.SourceTabl e. Dat abase. Connecti onStri ng,
base. OnPost Render (resul t);

In this example, SourceTable is a property of type SchemaExplorer.TableSchema. Depending on what metadata you're prompting the user for,
you'll need to adjust that part of the code to get a connection to the database where the generated script should be executed.

Merge Strategies

Merge strategies answer the question: How do | customize generated code without losing my customizations when the code is regenerated?
CodeSmith Generator offers you a choice of two different merge strategies:

® |nsertRegion Merge Strategy

® PreserveRegions Merge Strategy

® InsertClass Merge Strategy
CodeSmith Generator ships with various Merge Strategy sample templates that can be found in the Template Explorer under the following folder:
\Examples\Merge.

ﬁ Merge Strategies are supported using the CodeSmith Console Application and CodeSmith Project File to generate code.

Additional Information

InsertClass Merge Strategy

The InsertClass Merge Strategy is useful when you want to insert your template output into a previously existing class in the output file. At first this
may sound very similar to the Insert Region Merge Strategy, and indeed it did start out that way; however, this Merge Strategy has many
additional settings and features that separate it from it's other fellow Merge Strategies, and that make it a very robust and powerful tool.

Configuration Options

| think the best way to describe this Merge Strategy is through example; but before we can do that, we must first go over it's configuration options.

Language String, Only Support C# and VB.
Required

ClassName String, Name of the class to insert into.
Required

PreserveClassAttributes Boolean, = Whether or not the merge should preserve the existing classes attributes. By default, the merge
defaults tries to replace the entire existing class, which includes the attributes on the top of the class; this
to False option leaves the attributes from the top of the original class.

OnlylnsertMatchingClass = Boolean, Insert the whole template output or just the matching class.
defaults
to False

Mergelmports Boolean, @ Merge the import/using statements of the existing file and generated output.
defaults
to False

NotFoundAction Enum, What to do if the class is not found in the existing file. There are three options:
defaults
to None None: Don't merge anything, just leave the existing file as is.

InsertAtBottom: Append the output of the template to the bottom of existing file.

InsertinParent. Insert the output of the template at the bottom of a speficied parent section
(specified by the NotFoundParent property).

NotFoundParent String, If you specified InsertinParent for the NotFoundAction configuration, you must specify a name for
no the parent region. This can be the name of a Region or a Class.
default

Example Configuration...

Language: C#

ClassName: "Pet"
PreserveClassAttributes: True
OnlylnsertMatchingClass: True
Mergelmports: True

Existing File

usi ng System
usi ng Syst em Conponent Mbdel . Dat aAnnot at i ons;
nanmespace Pet shop

R

§ [Scaf f ol dTabl e(true)]

public class Pet

: {

public int Age { get; set; }

public string FirstName { get; set; }
i public string LastNane { get; set; }
| }

o)

using System
using System Text;
nanmespace Petshop

L

H public class Pet

: {

: public string FirstNane { get; set; }
public string LastNane { get; set; }
public string Ful | Name

5 {

H get { return String. Format ("{0} {1}", FirstName, LastNane); }
; }

; }

L)

Insert Class Merge Strategy Result!

usi ng System

usi ng Syst em Conponent Model . Dat aAnnot ati ons;
usi ng System Text;

nanespace Petshop

L i
§ [Scaf f ol dTabl e(true)] i
i public class Pet i
public string FirstName { get; set; }
public string LastNane { get; set; }
public string Ful | Name
s { 5
i get { return String. Format ("{0} {1}", FirstNanme, LastNane); } i
i) i
i } i
L e

InsertRegion Merge Strategy

The InsertRegion merge strategy is useful when you need to generate a single region of code within a file that is otherwise not authored by
CodeSmith Generator. The file must already exist with the appropriate region marked. CodeSmith Generator preserves the rest of the file
untouched. When using the InsertRegion merge strategy, you specify an initialization string in this format:

Regi onNane=<Regi onNane>; Language=<Language>

Given this initialization string, CodeSmith Generator will search for a region named "Sample Generated Region" marked by C# style region
markers. The generated code will be inserted in place of the contents of this region. The Language attribute in the initialization string is a key into
the HKEY_CURRENT_USER\Software\CodeSmith\<VERSION>\MergeStrategyAlias registry node. This node contains regular expressions for
defining the region markers for each supported language. By default, CodeSmith Generator recognizes region markers for VB, C#, and T-SQL,
but you can add your own regular expressions to the file to extend this support if you need to.

1, Ifyou do not specify a Language attribute in the initialization string, then the TargetLanguage attribute in the template's
CodeTemplate directive is used as a key instead.

Example

Here's an example so you can see how all the pieces fit together. First, a template, Copyright.cst, that can generate boiler plate copyright notices
in a format suitable for insertion in Visual Basic code:

<% CodeTenpl at e Language="VB" Tar get Language="VB" Descri pti on="Copyri ght notice generator." %
<% Property Nane="ConpanyNane" Type="System String" Category="Strings" Description="Your conpany

name." %
<%@ Property Name="C i ent Nanme" Type="System String" Category="Strings" Description="Cient conpany
name. " %

This nodule is delivered as |icensed content as defined

in the contract between <% CientNanme % and <% ConpanyNane %.
' Copyright (c) <% System DateTi ne. Now. Year % <% ConpanyNanme %
' Al other rights reserved.

<?xm version="1.0" encodi ng="utf-8"7?>
<codeSni t h>
<propertySet>
<property nane="ConpanyNane">CodeSm th Tools, LLC</property>
<property nane="d i ent Nane">Doe | ndustries</property>
</ propertySet>
</ codeSni t h>

HelloWorld.vb is a Visual Basic source code file with a region suitable for inserting the generated copyright notice. Note that this file also contains
some code that CodeSmith Generator should leave untouched:

Public dass Hellowrld
#Regi on " Copyright Notice"
"CodeSmith will insert the copyright notice here
#End Regi on
Public Sub New()
End Sub
Public Sub SayHell o()
' CodeSmith will leave this code intact
MessageBox. Show("Hel | o Worl d")
End Sub
End O ass

H Public Class Hellowrld H
H #Regi on " Copyri ght Notice" :
! This nmodule is delivered as |icensed content as defined :
i ' in the contract between Doe Industries and CodeSmith Tools, LLC. ;
{ ' Copyright (c) 1973 CodeSmith, LLC ;
" Al other rights reserved.
i #End Regi on i
§ Public Sub New() §
: End Sub :
i Publ i c Sub SayHel I o() i
! " CodeSmith will |eave this code intact :
: MessageBox. Show("Hel | o World") :
| End Sub ;
! End d ass !

CodeSmith Generator preserves everything outside of the specified region, including the region markers. This means that you can change the
metadata for the generation process and regenerate as often as you want without affecting anything outside of the specified region.

PreserveRegions Merge Strategy

The PreserveRegions merge strategy is useful when you need to preserve multiple custom regions in a file that is otherwise authored by
CodeSmith Generator. The file must already exist with the custom sections marked by appropriate region markers. CodeSmith

Generator transfers the marked regions to the template output when regenerating the file. When using the PreserveRegions merge strategy, you
specify an initialization string in this format:

&
<
o
S
&
3
&
Q
o
x
0
=2
-
=
)
o
7
E
o
3
—
o
>
@
c
o
@
o
I
n
[02]
o

Given this initialization string, CodeSmith Generator will search for a region named "Sample Generated Region" marked by C# style region
markers. The generated code will be inserted in place of the contents of this region. The Language attribute in the initialization string is a key into
the HKEY_CURRENT_USER\Software\CodeSmith\<VERSION>\MergeStrategyAlias registry node. This node contains regular expressions for
defining the region markers for each supported language. By default, CodeSmith Generator recognizes region markers for VB, C#, and T-SQL,
but you can add your own regular expressions to the file to extend this support if you need to.

1, Ifyou do not specify a Language attribute in the initialization string, then the TargetLanguage attribute in the template's
CodeTemplate directive is used as a key instead.

Here's an example so you can see how all the pieces fit together. First, a template, CustomClass.cst. Note that the template defines two empty
C# regions. These are the regions that will be used to preserve custom code that already exists in the output file.

<%@ CodeTenpl at e Language="C#" Tar get Language="C#" Descri pti on="Custom cl ass generator." %
<%@ Property Name="C assNanme" Type="System String" Description="Nane of the class." %
#regi on Keep copyri ght

#endr egi on

class <% Cl assNane %

{
public <% C assNane % ()
{
/1 Insert default constructor code here
}
#regi on Keep custom net hods
#endr egi on
}

#regi on Keep copyri ght
Copyright (c) 1973 CodeSnith Tools, LLC
#endr egi on

cl ass Engi ne

A i
: public Engine() :
i { i
f /1 Insert default constructor code here f
o |
i #regi on Keep custom net hods i
H public string Uniquel D)

a { a
: return("E8472"); :
i ; i
: #endr egi on :
. :

And the resulting changes to Engine.cs:

#regi on Keep copyri ght
Copyright (c) 1973 CodeSnith LLC
#endr egi on

class Driver

o |
: public Driver() :
e { i
/1 Insert default constructor code here
) |
#regi on Keep custom net hods i
i public string Uniquel D() i
i { ;
return("E8472"); i
i ; i
: #endr egi on :
o) Z

Defining Your Own Merge Strategy

Merge strategies are carried out by classes that implement the CodeSmith.Engine.IMergeStrategy interface. After defining your own merge
strategy, there are two ways that you can use it. First, you can specify a fully-qualified assembly name when calling the merge strategy from the
command line:

/ mer ge: MyMer geAssenbl y. MyMer geSt r agegy=" Mer gePar anet er s=Sanpl e Merge Par anet er s; Language=C#; "

Also, you can register your merge strategy with CodeSmtih Generator. This allows you to refer to your merge strategy by name and not by the
types FullName.

lﬂ Adding your merge strategy to the alias list allows you to call it by name when you use the /merge switch.

To do this, you will need to add a registry entry to the following node:

| HKEY_CURRENT USER\ Sof t war e\ CodeSni t h\ <VERS| ON>\ Mer geSt r at egyAl i as\ <NUMBER THAT DOESN T EXI ST (E. G, ;
: 5)> i

Finally, you will need to create the following string registry values: Name and TypeName. Here is an entry of an example that ships with
CodeSmith Generator, the contents of the code below is an registry export.

W ndows Registry Editor Version 5.00
[HKEY_CURRENT_USER\ Sof t war e\ CodeSmi t h\ <VERSI ON>\ Mer geSt r at egyAl i as\ 5]

"Name" =" Pr eser veRegi ons"
"TypeNane" =" CodeSmi t h. Engi ne. Preser veRegi onsMer geSt r at egy, CodeSmi t h. Engi ne"

Active vs. Passive Generation

Broadly speaking, there are two different types of code generators: passive code generators and active code generators.

Passive code generators generate code once and then give up all responsibility for it. The wizards and builders that you find in modern IDEs are
typically passive code generators. They're good for coming up with code that the developer later customizes, but once the code has been
generated, a passive code generator can't regenerate it with changes.

In contrast, active code generators are designed to maintain a link with the code that is generated over the long term by allowing the generator to
be run multiple times over the same code. The key point to keep in mind about active code generators is that the template is the source code.

http://codesmithtools.com/help/##GeneratorAPI.chm/html/4a67e55e-e98f-d1c5-3bd7-ad923a6e2147.htm
http://www.akadia.com/services/windows_registry_tutorial.html

Suppose you're generating 500 class files from a single template. With an active code generator, if you find a bug in the architecture of those
classes (say, you've made a mistake in the way that you're handling object persistence), it's not a huge problem. You just fix the one template and
regenerate the 500 classes. This obviously saves you an incredible amount of time over fixing the same bug over and over again in 500 separate
class files.

But what happens when a template can't generate everything that needs to appear in the source code file? Suppose some of those 500 classes
need custom methods, and the custom methods are different in different classes. For an active code generator to be effective, it must provide
some way for a developer to customize its output, and then allow code regeneration without destroying those customizations.

By default, CodeSmith Generator doesn't allow for custom code in the files that it generates. When you execute a template, it overwrites any
existing output file completely. But there are ways to use CodeSmith Generator in conjunction with custom code. Here are three strategies to
enable active code generation and custom code together with CodeSmith Generator:

® Use inheritance
® Use merge strategies
® Use .NET 2.0 partial classes

Using Inheritance to Enable Active Generation

One way to enable active code generation with CodeSmith Generator is to use CodeSmith Generator to generate a base class, and then to
customize a derived class. When you regenerate the base class, CodeSmith Generator doesn't touch the code in the derived class.

As a simple example, you might design this template to use in a financial application:

<%@ CodeTenpl at e Language="C#" Tar get Language="C#" Descri pti on="Base cl ass generator." %

<% Property Nane="C assNane" Type="System String" Description="Nane of the class." %

<% Property Nane="Constructor Paranmet er Name" Type="System String" Descri ption="Constructor
paraneter nane." %

<% Property Nane="Constructor Paranet er Type" Type="System String" Description="Data type of the
constructor paraneter." %

class <% C assName %

{
<% Construct or Par anet er Type % m <% Construct or Par anet er Nane %,;
public <% d assNane % (<% ConstructorParaneter Type % <% ConstructorParanmet er Nane %)
{
m <% Construct or Paranet er Name % = <% Construct or Par anet er Nane %
}
}

You might execute this template with the following metadata:

Properties = 0 X

o2l HE B@ 2 e |

ClassMame Account
ConstructorParamet balance

ConstructorParamet int

ConstructorParameterType
Data type of the constructor parameter.

The resulting generated class looks like this:

class Account

I !
: int mbal ance; i
public Account (int bal ance)
: { i
m bal ance = bal ance
i } i
o i

With the generated code stored in Account.cs, you could then write a second class by hand and store it in Checking.cs:

class Checking : Account

o |
i public Checking : base(0) i
: { :
i } i
) 5

Now, suppose that your requirements change and you decide that the account balance should really be a floating-point value. You can change
the ConstructorParameterType property to double, regenerate the Account.cs file, and recompile without touching the handwritten code in
Account.cs. As long as you don't insert any custom code directly in the base class, you can regenerate that class as often as you like.

Using Merge Strategies to Enable Active Generation

A second way to enable active code generation with CodeSmith Generator is to use the CodeSmith Generator Console Application with merge
strategies to generate code. Merge strategies allow you to generate specific portions of a file, while allowing the developer to customize the
remainder of the file. Merge strategies provide a flexible way to enable active code generation, provided that developers maintain the discipline to
avoid putting custom code inside of the regions that will be overwritten by CodeSmith Generator.

For example, consider this template for generating HTML pages with some standard scaffolding around a user-entered body:

<%@ CodeTenpl at e Language="C#" Tar get Language="HTM." %

<%@ Property Name="Title" Type="System String" Optional ="Fal se" Category="0Opti ons"
Description="Page title." %

<% Property Nane="Char Set" Type="System String" Optional ="Fal se" Defaul t="wi ndows-1252"
Cat egory="0Options" Description="Character set for the page." %

<% Property Nane="Incl udeMeta" Type="System Bool ean" Defaul t="True" Optional ="Fal se"
Cat egory="0Options" Description="Include neta tags." %

<% Property Nane="Copyright" Type="System String" Optional ="Fal se" Defaul t="Copyright (c)
MyConpany. cont Cat egory="Opti ons" Description="Character set for the page." %

<htm >

<head>

<% if (IncludeMeta)

{ %

<meta http-equi v="Content-Type" content="text/htm; charset=<% CharSet %">

<%} %

<title><% Title %</title>

</ head>

<body>

<hl><% Title %</hl>

<!- region Keep body ->

<!'- endregion ->

<p><% Copyright %</p>

</ body>

</htm >

Given this template, you can use the PreserveRegion Merge Strategy to enable active code generation. As long as the user limits their changes to
the "Keep body" region, you can regenerate the meta tag, title, and copyright statement for the page as often as you like without destroying their
changes.

. Tosuccessfully use the PreserveRegion Merge Strategy with this template, you need to define the region markers for the HTML
template:

<l anguageRegi onDef i ni ti ons>
<l anguageKeyLi st >
<key>HTM.</ key>
</ | anguageKeyLi st >
<regionStart Regex>[\t]\<!--#?(?i:region)(?<nane>[\r\n])?\r?\n</regionStart Regex>
<r egi onEndRegex>"[\t]\<!--#7?(?i:endregion.\r?\ n</regi onEndRegex>
</ | anguageRegi onDefi ni ti ons>

Using Partial Classes to Enable Active Generation

.NET 2.0 offers a new feature that enables active code generation scenarios in both C# and Visual Basic .NET: partial classes. With partial
classes, the code for a single class can be split across multiple class declarations, in one or more files. At compile time, the compiler locates all of
the pieces of the class and assembles them into a single complied class.

In C#, partial class definitions look like this:

partial class C assl

public void Methodl
s { 5
H /'l code to inplement Methodl H
: } :
) |
partial class O assl
oA :
§ public void Method2 §
/1 code to inplement Method2
I 5
o g

Partial Public Cass COassl
Public Sub Met hodl
' Code to inplenent Methodl
End Sub
End d ass

Partial Public Cass Cassl
Public Sub Method2
' Code to inplenment Method2
End Sub
End d ass

In either case, you can enable active generation by generating the code for Method1, while keeping the handcrafted code for Method2 in a
separate file, untouched by CodeSmith Generator. At compile time, the appropriate compiler will knit the two files together into a single unified
class.

Template Caching

CodeSmith Generator uses a technique called template caching to speed up the process time of generating templates. If the template's content
and dependencies have not changed, CodeSmith Generator is able to use the already compiled assembly to render the template's output, rather
than recompiling the template.

For CodeSmith Generator to be able to use template caching, the template must be unchanged since the last time it was compiled. To determine

this, CodeSmith Generator checks the source code of the template for changes, and also recurses into any templates and source files referenced
through Assembly or Register directives.

Template caching makes a big difference in the performance of CodeSmith Generator when you're repeatedly executing the same template
without modifying the template itself. You'll see a nice performance boost when you just execute a template (the Properties window will open
more quickly), but the real benefit comes when you integrate CodeSmith Generator into your build process. With template caching, using
CodeSmith Generator through the batch generation process or CodeSmith Generator Console Application is substantially faster.

Version Control Support

Exclusive Checkouts

In CodeSmith Generator 6.0, we made some changes that will help users who are using exclusive checkout version control systems like Microsoft
Team Foundation Server (TFS), Vault and Visual SourceSafe. In the past, if you generated a bunch of files using CodeSmith Generator, it would
overwrite the file contents and change the modified date on files even if the generated content was exactly the same as the existing content. This
would cause the version control system to checkout every single file and treat them as if they were changed and needed to be checked in. Most
version control systems would then see that the content hadn't actually changed and ignore the check-in request, but it was still a pain when you
went to check-in and would see hundreds of modified files in the list.

We also went through a big round of testing to make sure that everything works as expected using the exclusive checkout systems inside of

Visual Studio. When you make a change to a Generator Project file, it is automatically checked out as you would expect. We tried to make sure
everything works as smoothly as possible.

Template Explorer

Template Explorer has rich integration with Windows which also includes all of your Windows Explorer context menus. This gives you the ability to
update from source control and much more. The image below shows the ability to update or commit to a SVN repository using the Windows
Explorer context menus.

% CodeSmith Generator Explo. Qlﬂlg
———ﬂ‘—h“

= | ™

4. | Temnplates

b %, ActiveSnippets
> Database

41y Examples

- ASP.MET

4 -4 Basicsamples

a-#y, CSharp

- @ Codebmithl01
14| CodeBehind.cs
-#4E] MasterTemplaf Execute
4] PartialTemplat Edit

ﬁ ProgressRepor Open with...
,ﬁ SimpleTemplal

,ﬁ SubTemplate.g & 5VN Update
,ﬁ TemplateScript @ SVN Commit...
-] Usingling.cst | ¢ TortoiseSUN
s gy lavaScript
- @ VisualBasic Restore previous versions
s # Maps
T P Send to
> . Merge
» g Photo Gallery Cut
s Aml
C
I > Frameworks e
» @y Other Create shortcut

Delete

Building a Custom Schema Provider for SchemaExplorer

If you have a custom data source that looks like a database (that is, it exposes data in tables and columns, perhaps with indexes, views, and
commands), you may find it convenient to hook your data source into SchemaExplorer. If you do this, users will be able to use the standard
SchemaExplorer user interface components to retrieve data from your data source, and you can use the SchemaExplorer object model to work
with the data in your templates.

You can integrate your own data with SchemaExplorer by building a custom Schema Provider. In this tutorial we will show you how to build and
debug a custom Schema Provider.

You can find the source code for all of CodeSmith Generators' Schema Providers in your extracted templates folder. The default
template folder is located in the My Documents folder. You can find all of the extracted Schema Provider source code in the
following directory: Documents\CodeSmith Generator\Samples\<Version>\Projects\CSharp\

Creating a Custom Schema Provider

You can integrate your own data with SchemaExplorer by building a custom schema provider. To create your own schema provider simply create
a new assembly which includes a public class that implements the SchemaExplorer.IDbSchemaProvider interface. Also, the assembly name
must end with SchemaProvider.dll (for example, SchemaExplorer.CustomSchemaProvider.dll). All of the CodeSmith Generator Schema

Providers are prefixed with "SchemaExplorer." (E.G., SchemaExplorer.SglSchemaProvider.dll). It is recommended that you also choose to follow
this naming convention.

1. Itis recommended to follow the naming pattern defined above as it will ensure that an assembly is compiled that follows our
naming conventions. Please note that when looking at other provider source code, a default namespace SchemaExplorer will
be used. It is not required that your SchemaProvider reside in a namespace named SchemaExplorer.

Q You can find the source code for all of CodeSmith Generators' Schema Providers in your extracted templates folder. The default
template folder is located in the My Documents folder. You can find all of the extracted Schema Provider source code in the
following directory: Documents\CodeSmith Generator\Samples\<Version>\Projects\CSharp\

Creating a new Schema Provider

The next step is to create a new Schema Provider by opening up Visual Studio and add a new CSharp or Visual Basic Class Library named
SchemaExplorer.CustomSchemaProvider. Please note that this can be any name that you choose as long as you follow the naming criteria
specified above.

MNew Project |@ =] E

Recent Templates [.NET Framework 4 -] Sort by: [Default | Search Installed Templates © |
Installed Templates «| g Vieual C#
_ a E‘cﬁ Windows Forms Application Visual C#) Ypes Misuals

4 Visual C# = —| A project for creating a C# class library

Windows — odin

Web | g** WPF Application Visual C#

Office]

Cloud gﬁ:ﬁ Consele Application Visual C#

Extensibility _

Reporting % ASP.MET Web Application Visual C&

SharePeoint —

Silverlight ;ecﬁ Class Library Visual C#

Test -
Online Templates =of ASP.MET MVC 2 Web Application Visual C# -
Mame: SchemnaExplorer.CustomSchemaProvider
Location: ghdocuments\visual studio 20100\Projects - Browse...
Solution name: SchemaExplorer.CustomSchemaProvider Create directory for solution

|| Add to source control
—T

Once the project has been created, we will want to rename the Classl.cs file to CustomSchemaProvider.cs and rename the class name

to CustomSchemaProvider.

Adding CodeSmith Generator References

We will now add references to our new Class Library project so we can start implementing the SchemaExplorer Interfaces that allows CodeSmith
Generator to consume our new Schema Provider. Note: To add a project reference, please see this guide. You will need to navigate to the
CodeSmith Generator Program Files folder and add a reference to the following two assemblies: AddIns\SchemaExplorer.dll and
bin\CodeSmith.Core.dll. The references should now show up in the Visual Studio Solution Explorer Tool Window.

Solution Explorer 0 X

_g Selution 'SchemaBxplorer.CustomSchernaProvider' (1 project)
4 7] SchemaExplorer.CustomSchemaProvider
> [=d| Properties
4 | _ References
<3 CodeSmith.Core
<3 Microsoft.CSharp
+J SchemaExplorer
«J Systern

A Systern.Core
<3 System.Data
3 Systermn.Data.DataSetExtensions
<3 Systern.dml
£ System.{ml.Ling
#] CustornSchemaProvider.cs

Inheriting the SchemaExplorer Schema Provider Interfaces

Now it is time to implement the SchemaExplorer Interfaces so CodeSmith Generator can talk to the new provider. The main Interface that is
required is called SchemaExplorer.IDbSchemaProvider. This interface implements the core functionality for populating the SchemaExplorer
objects (E.G., TableSchema, ColumnSchema, etc...). There is a second interface that you can implement

called SchemaExplorer.IDbConnectionStringEditor. When this interface is implemented, it tells CodeSmith Generator that there is an available
ConnectionString designer and allows you to show a designer when the user clicks on the designer button.

You can find the source code for all of CodeSmith Generators' Schema Providers in your extracted templates folder. The default
template folder is located in the My Documents folder. You can find all of the extracted Schema Provider source code in the
following directory: Documents\CodeSmith Generator\Samples\<Version>\Projects\CSharp\

It is highly recommended to take a look at the existing Open Source Schema Provider source code for all of the CodeSmith Generator Schema
Providers as a reference when building a new Schema Provider. This can be found in your My Documents folder as described in the tip above.
After we have implemented the two interfaces above, our new CustomSchemaProvider class should look like this:

usi ng System

nanmespace SchenmaExpl orer. Cust onSchemaPr ovi der

{
public class CustonSchenaProvi der : SchemaExpl orer.|DbSchenaProvi der,
SchemaExpl or er. | DbConnecti onStri ngEdit or

The next step is to implement the interfaces defined above. | told Visual Studio to implement the interfaces to save me from writing a lot of the
simple implementation details. Below is what the default implementation looks like after it has been created by Visual Studio.

#region | nplenmentation of | DbSchemaProvi der

http://msdn.microsoft.com/en-us/library/wkze6zky(v=VS.100).aspx

/1] <summary>

/1l CGets the name of the schema provider (E G Sql SchenaProvider).
11l </ summary>

public string Nane { get; private set; }

/1] <summary>

/1] Gets the description for the schema provider (E.G SQ. Server Schema Provider)..
/1] </summary>

public string Description { get; private set; }

/1] <summary>

/1] Gets the name of the database.

11l </ summary>

/1l <param nane="connecti onString">The connection string used to connect to the target
dat abase. </ par anm>

/1l <returns>The name of the database</returns>

public string GetDatabaseNane(string connectionString)

{
}

t hrow new Not | npl ement edException();

/1] <summary>
/1l Cets the extended property collection for a given schema object.
/1] </ sunmary>
/11 <param nane="connecti onString">The connection string used to connect to the target
dat abase. </ par anm>
/1] <param name="schemaObj ect">Any type that derives from Schenma(bj ect Base. (E. G DatabaseSchema,
Tabl eSchema, Col umSchenm, Vi ewSchemm, Vi ewCol umSchenmm, | ndexSchema, CommandSchens,
Par anet er Schenma, PrimaryKeySchema, Tabl eKeySchema) </ par ant
/1] <returns>An array of ExtendedProperties for a specific Schema(bjectBase. </returns>
public ExtendedProperty[] GetExtendedProperties(string connectionString, SchenaObjectBase
schemaObj ect)
{

t hrow new Not | npl enent edException();
}

/11 <sunmary>
/1] Sets the extended properties.
/1] </summary>
/1] <param nanme="connectionString">The connection string used to connect to the target
dat abase. </ par an>
/1] <param nanme="schemaObj ect">Any type that derives from Schenmabj ect Base. (E. G DatabaseSchema,
Tabl eSchenm, Col umSchera, Vi ewSchema, Vi ewCol uimSchema, |ndexSchema, CommandSchensa,
Par anet er Schenmn, Pri maryKeySchema, Tabl eKeySchenn) </ par an>
public void SetExtendedProperties(string connectionString, SchenmaObjectBase schemaCbj ect)
{
t hrow new Not | npl enent edException();
}

/1] <summary>
/1l Cets all of the tables available in the database.
/1] </summary>
/1] <param nanme="connectionString">The connection string used to connect to the target
dat abase. </ par an»>
/1l <param nane="dat abase">The dat abase schemna. </ paran»
/1] <returns>An array of tables for a specific database.</returns>
public Tabl eSchema[] GetTabl es(string connectionString, DatabaseSchema dat abase)
{
t hrow new Not | npl ement edException();

}

/1] <summary>

/1l Cets all colums for a given table.

/1] </sumary>

/1] <param name="connectionString">The connection string used to connect to the target
dat abase. </ par anm>

/11l <param nane="t abl e">The tabl e schena. </ parane

/1l <returns>An array of view colums for a specific table.</returns>

public Col umSchema[] GCet Tabl eCol utms(string connectionString, Tabl eSchena tabl e)

{
t hrow new Not | npl ement edException();

}

/11 <sunmary>
/1l Gets all the views available for a given database.
/1] </summary>
/1] <param nanme="connectionString">The connection string used to connect to the target
dat abase. </ par anr
/1] <param nane="dat abase" >The dat abase schena. </ par an»
/1] <returns>An array of views for a specific database.</returns>
public ViewSchema[] GetViews(string connectionString, DatabaseSchema dat abase)
{
t hrow new Not | npl enment edException();
}

/11 <sunmary>
/1] Gets the colums for a given view.
/1] </summary>
/1] <param nanme="connectionString">The connection string used to connect to the target
dat abase. </ par an>
/1l <param name="vi ew'>The vi ew schema. </ par an»
/1] <returns>An array of view colums for a specific view </returns>
public Vi ewCol umSchena[] Get Vi ewCol ums(string connectionString, ViewSchema view)
{
t hrow new Not | npl enent edException();
}

/1] <summary>
/1] Gets the definition for a given view
/1] </sumrary>
/1] <param nanme="connectionString">The connection string used to connect to the target
dat abase. </ par an>
/1] <param name="vi ew'>The vi ew schenma. </ par an>
/1l <returns>The definition of a view </returns>
public string GetViewText(string connectionString, ViewSchema view)
{
t hrow new Not | npl enment edException();

}

/1] <summary>
/1l Cets the primary key for a given table.
/11 </sumary>
/1] <param nanme="connectionString">The connection string used to connect to the target
dat abase. </ par anm>
/1l <param nane="t abl e">The tabl e schena. </ paran®
/11 <returns>An the primary key for a specific table.</returns>
public PrinmaryKeySchema Get Tabl ePri maryKey(string connectionString, Tabl eSchema table)
{
t hrow new Not | npl ement edException();

}

/1] <summary>

/1l Cets all of the table keys for a given table.

/1] </ summary>

/1l <param nane="connecti onString">The connection string used to connect to the target
dat abase. </ par anm>

/11l <param nane="t abl e">The tabl e schena. </ paran®

/1l <returns>An array of keys for a specific table.</returns>

public Tabl eKeySchenma[] GCet Tabl eKeys(string connectionString, Tabl eSchena table)

{
}

t hrow new Not | npl ement edException();

/1] <sunmmary>

/1l Gats all of the indexes for a given table.

11l </ summary>

/1l <param nane="connecti onString">The connection string used to connect to the target
dat abase. </ par anm>

/11 <param nane="t abl e">The tabl e schena. </ parane

/1l <returns>An array of indexes for a specific table.</returns>
public I ndexSchema[] GetTabl el ndexes(string connectionString, Tabl eSchena table)
{
t hrow new Not | npl enment edException();
}

/1] <summary>
/1] Gets the data fromthe given table.
/1] </summary>
/1]l <param name="connectionString">The connection string used to connect to the target
dat abase. </ par an>
/1] <param nanme="t abl e">The tabl e schena. </ par an>
/1l <returns>A DataTabl e containing the data of the specific table.</returns>
publ i c DataTabl e Get Tabl eData(string connectionString, Tabl eSchena table)
{
t hrow new Not | npl enent edException();
}

/1] <summary>
/1l Cets the data froma given view
/1] </summary>
/1] <param nanme="connectionString">The connection string used to connect to the target
dat abase. </ par anm»>
/1l <param nane="vi ew'>The vi ew schema. </ par an®
/1] <returns>A DataTabl e containing the data of the specific view </returns>
public DataTabl e GetVi ewData(string connectionString, ViewSchema view)
{
t hrow new Not | npl ement edException();

}

/1] <summary>

/1l Gets all commands for the given database.

/1] </sumary>

/1] <param name="connectionString">The connection string used to connect to the target
dat abase. </ par anm>

/1l <param nane="dat abase">The dat abase schemna. </ parane

/1l <returns>An array of conmmands. </returns>

publi ¢ CommandSchema[] Get Commands(string connectionString, DatabaseSchena dat abase)

{
}

t hrow new Not | npl ement edException();

/1] <sunmmary>

/1l Cets the parameters for a given command.

/1] </ summary>

/1l <param nane="connecti onString">The connection string used to connect to the target
dat abase. </ par anm>

/1l <param nane="comuand" >The conmand schema. </ par an»>

/1l <returns>An array of paraneters.</returns>

public ParaneterSchema[] Get CommandPar anmeters(string connectionString, ComnmandSchena conmmand)

{
}

t hrow new Not | npl ement edException();

/1] <summary>

/1l CGets the definition for a given comand.

/1] </ sunmary>

/1l <param nane="connecti onString">The connection string used to connect to the target
dat abase. </ par anm»>

/1] <param name="command" >The conmand schena. </ par an>

/1] <returns>The definition of a command. </returns>

public string Get CoomandText (string connectionString, CommandSchema conmand)

{
}

t hrow new Not | npl ement edException();

/11 <sunmary>

/1l Cets schema informati on about the results of a given command.

11l </ summary>

/1l <param nane="connecti onString">The connection string used to connect to the target

! dat abase. </ par an> !
/1] <param name="command" >The conmand schena. </ par an®>
/1l <returns>An array of conmand results.</returns>
: publ i c CommandResul t Schema[] Get CommandResul t Schemas(string connectionString, CommandSchenma :
conmand)
Lo i
t hr ow new Not | npl ement edExcepti on();

}

#endr egi on

#region | npl enentation of |DbConnectionStringEditor
public bool ShowEditor(string currentConnectionString)
{

t hrow new Not | npl ement edException();

public string ConnectionString { get; private set; }
public bool EditorAvailable { get; private set; }

#endr egi on

Implementing the SchemaExplorer Interfaces

It is highly recommended that you implement all of the methods and properties that were created. It is recommended to implement the
ExtendedProperty methods but it isn't required. In the future, we may provide a new abstract base class implementation which implements
Extended Property support for you using a in memory database, but as of this time this is not on the official road map.

The first section to implement would be the Name and Description properties which display the name and description of the Schema Provider in
CodeSmith Generator.

/1] <summary>

/1l Gets the name of the schema provider (E. G Sqgl SchemaProvider).
/11 </sumary>

public string Name { get { return "CustonSchemaProvider"; } }

/1] <summary>

/1l Gets the description for the schemn provider (E.G SQ Server Schema Provider)..
[l </ summary>

public string Description { get { return "A Custom Schema Provider"; } }

Next, the GetDatabaseName method returns the name of a Database that is retrieved by the DataSource specified in the connection string (E.G.,
the Database name or a file name). From this point on, all of the methods are really important like the GetTables method

/1] <summary>

/1l Cets all of the tables available in the database.

/1] </sumary>

/1] <param name="connectionString">The connection string used to connect to the target
dat abase. </ par anm>

/1l <param nane="dat abase">The dat abase schemna. </ parane

/1l <returns>An array of tables for a specific database.</returns>

public Tabl eSchema[] GetTabl es(string connectionString, DatabaseSchema dat abase)

{

t hrow new Not | npl ement edException();

which returns all of the tables in this custom DataSource or the GetTableColumns which returns a list of columns for a specified table.

/1] <summary>

/1l Cets all colums for a given table.

11l </ summary>

/1l <param nane="connecti onString">The connection string used to connect to the target
dat abase. </ par anm>

/1] <param nane="t abl e">The tabl e schena. </ parane

/1l <returns>An array of view colums for a specific table.</returns>

public Col umSchenma[] Get Tabl eCol ums(string connectionString, Tabl eSchena table)

{
t hrow new Not | npl ement edException();

Download Custom Schema Provider Source

Click here to download the source code above.

Building a Custom Schema Provider

The first step is to set the output directory to the CodeSmith Generator Program Files Folder SchemaProviders Folder. To do this you will want to
go into the Project's Properties page by right clicking the Project in Solution Explorer and selecting Properties. Next navigate to the Build tab and
set the Configuration drop down list to All Configurations. Please note that this may require that you run Visual Studio as an Administrator to
build assemblies to a directory that requires elevated permissions via User Account Control (UAC). Also a build error may occur if CodeSmith
Generator is open while building the Custom Schema Provider.

http://technet.microsoft.com/en-us/library/cc709691(WS.10).aspx

Eﬂ SchemaExplorer.CustomSchemaProvider

E SchemaExplo...emaProvider x

Application
Configuration: | All Configurations - Platform: | Active (Any CPU) -
Build
G |
Build Events Eners
Debug Conditional compilation symbols:
Define DEBUG constant
Resources
Define TRACE constant
Services
Platform target: Any CPU -
Setti
‘ngs [T] Allow unsafe code
Reference Paths Optimize code
Signing Errors and warnings
Code Analysis Warning level: 4 -

Suppress warnings:

Treat warnings as errors
@ MNone
oAl
() Specific warnings:

Output

Qutput path: C\Program Files (x86)\CodeSmith\wE.0\SchemaProvide

[7] ¥ML documentation file:

[T] Register for COM interop

Generate serialization assembly: Auto h

You will want to set the Output path property value to the CodeSmith Generator Program Files Folder SchemaProviders Folder (C:\Program
Files\CodeSmith\<Version>\SchemaProviders). You can do this by clicking on the browse button or manually typing the value in. It is
recommended that you browser for this folder location. By setting this property it ensures that you will be building the Custom Schema Provider to
the correct directory so CodeSmith Generator automatically picks up the latest changes when you restart CodeSmith Generator.

Debugging a Custom Schema Provider

The first step to debugging a Custom Schema Provider is to make sure your project is set to compile in Debug mode as opposed to Release
mode. The next step is to set a Start Up application so any of your break points inside of your Custom Schema Provider get hit while running
CodeSmith Generator. To do this you will want to go into the Project's Properties page by right clicking the Project in Solution Explorer and
selecting Properties. Next navigate to the Debug tab and set the Configuration drop down list to All Configurations. Next under the Start Action
Section choose the Start External Program. You will want to browse for the application you want to test the Custom Schema Provider with. In
almost every case you will want to check out the Custom Schema Provider with CodeSmith Generator Explorer (C:\Program
Files\CodeSmith\<Version>\CodeSmith.exe).

ﬂ Please configure the Build Directory before debugging to ensure your breakpoints are hit and your latest changes take effect.

http://msdn.microsoft.com/en-us/library/wx0123s5.aspx
http://msdn.microsoft.com/en-us/library/wx0123s5.aspx

B Schem aExplorer.CustomSchemaProvider

E SchemaExplo...emaProvider x

Application
Configuration: | All Configurations - Platform: | Active (Any CPU) -
Build
Start Acti -
Build Events 2 ten —
() Start ject
Debug & BELII
@ Start external program: \Program Files (86)\CodeSmith'v6.0\CodeSmith.exe
Resources . -
() Start browser with URL:
Services
Start Opti
Settings e

Reference Paths

m

Signing
Code Analysis
[7] Use remote machine

Enable Debuggers

[] Enable unmanaged code debugging

[T] Enable SQL Server debugging

Next, set a break point in your project and start debugging!

Data Source @

Mame: My Custom Schema Provider

Provider Type: [D;stmnSdmaFmﬂda’ vJ

3 - oo ADO¥SchemaProvider
Connection String: T T ————
|SeresSchemaProvider
MySQLSchemaProvider
OracleSchemaProvider
Postare SQLSchemaProvider
SQLAMwhere SchemaProvider -
SqlCompact SchemaProvider
SQLiteSchemaProvider
Sgl5chemaProvider e
VistaDBSchemaProvider

Deploying a Custom Schema Provider

To deploy a custom Schema Provider you will need to:

® Make sure that the schema provider's assembly file name ends with "SchemaProvider.dll".

® Place the schema provider's compiled assembly (bin\SchemaExplorer.CustomSchemaProvider.dll in our example) in the CodeSmith
Generator Program Files folder SchemaProviders Folder (ex. C:\Program Files\CodeSmith Generator\<Version>\SchemaProviders).

® |n order to use the schema provider from Visual Studio, you will need to add the schema provider to the GAC.

® Restart CodeSmith Generator and/or Visual Studio.

Upgrading a Custom Schema Provider

To upgrade an existing SchemaProvider to a newer version of CodeSmith Generator you will want to ensure that you remove all CodeSmith
Generator project references and re-add them. Please note that you will want to ensure that they are pointing to the correct version of CodeSmith
Generator by right clicking on the project reference and select properties. There will be Version information that is presented in the Visual Studio
Properties Window. After this has been completed, just rebuild and redeploy to the CodeSmith Generator Program Files Folder SchemaProviders
Folder.

Using CodeSmith.CustomProperties
CodeSmith Generator ships with a sample project, CodeSmith.CustomProperties, that includes some useful property types for your templates:

® FileNameEditor can be used to let the user select a filename as the value for a property
® StringCollection can be used to let the user enter a collection of strings as the value for a property

You can find this project in your extracted samples folder (Documents\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\CustomPropertiesSample).

FileNameEditor

The FileNameEditor class lets you provide your users with a standard open file dialog box or save file dialog box from the CodeSmith Generator
property grid. To use this class, you must include a reference to the CodeSmith.CustomProperties assembly in your template. You'll make the
code simpler if you import the namespace as well:

<%@ Assenbl y Nane="CodeSnmith. Cust onProperties" %
<% | nport Nanespace="CodeSmi t h. Cust onProperties" %

<script runat="tenpl ate">

private string _userFileNane = @c:\tenp\test.txt";

[Edi tor (typeof (Fil eNameEdi tor), typeof(System Draw ng. Desi gn. Ul TypeEditor)),
Cat egory("Custont), Description("User selected file.")]

public string UserFil eNane

{
get {return _userFileNane;}
set {_userFil eNane= val ue;}
}
</script>

When the user executes the template, the specified property will display a builder button on the property sheet (highlighted in green):

. FileNameEditor.cst - CodeSmith Ge... I. — éj

2z e, |

OpenFileMame chtemptest.txt

Clicking the builder button will open the specified file dialog box:

, -
2% Select UserFileName =
———
@uv| . % Docume... » CodeSmith Generator » - | g | | Search CodeSmith Generator S |
Organize » Mew folder 4= - @
- .
I Favorites — Documents library Arrange by: Folder ~
CodeSmith Generator
x . - -~
7 Libraries | Mame Type Size
@ Documents
J’ Music . Maps File folder
] Pictures . Samples File folder
=]l Subversion .. Templates File folder
B Videos
#& Homearoup s < il | r
File name: MewTemplate.cst -
Save as type: ’AII Files (*.7) v]
* Hide Folders [Save] [Cancel]

You can customize the appearance of the file dialog box by applying the FileDialogAttribute to the property. For example, consider this property
definition:

private string _openFileNane = @c:\tenp\test.txt";
[Edi tor (typeof (Fi | eNaneEditor), typeof(System Draw ng. Design. U TypeEditor)),
Fi | eDi al ogAttri bute(Fil eDi al ogType. Open, Title="Select Input File"),
Cat egory("Custont), Description("User selected file.")]
public string OpenFil eNane
{
get {return _openFileNane;}
set {_openFil eNanme= val ue;}

The File Dialog title has been updated in this example to "Select Input File" The resulting file dialog box looks like this:

' R
elect Input File
% Select Input Fil =
@\‘:}v| . # My Doc.. » CodeSmith Generator » - | ¥f| | Search CodeSmith Generator 0o |
Organize » Mew folder B== ~ [@
-
w0 Favorites Mame Type Size
. Maps File folder
) Libraries J Samples File folder
@ Documents . Templates File folder
J‘F Music E
[e=| Pictures
=l Subversion
B Videos
#d Hemegroup
"M Comnuter 2
File name: MewTemplate.cst - [NlFilES) "]
[Open] [Cancel]
!

You can specify these properties in the FileDialogAttribute:

Property Meaning Default

Fi | eDi al ogType Save or Open FileDialogType.Save
Filter Filter string for file extensions All Files ()|*.*
Title Dialog box title Select propertyname
Def aul t Ext ensi on Default file extensions None

CheckFi | eExi sts True to only allow selecting existing files False

CheckPat hExi st s True to only allow using existing paths False

To select a folder name instead of a file name, use the FolderNameEditor class from the .NET Framework instead:

<% Assenbl y Nane="System Desi gn" %

<script runat="tenpl ate">

private string _outputDirectory = @c:\tenp";

[Edi t or (t ypeof (Syst em W ndows. For ns. Desi gn. Fol der NaneEdi t or) ,
t ypeof (Syst em Dr awi ng. Desi gn. Ul TypeEdi tor)),

Cat egory("Custont), Description("Qutput directory.")]

public string QutputDirectory

{
get {return _outputDirectory;}
set {_outputDirectory= val ue;}
}
</script>

StringCollection

la Please take notice that this class has been marked as obsolete. Please use a generic collection instead.

The StringCollection provides a way for users to enter a list of strings. In your code, you can refer to these strings as members of an array. To use
this class, you must include a reference to the CodeSmith.CustomProperties assembly in your template:

3
®
&
®
g
<
&
3
it
g
&
w
ES
3
o
3
3
@
-
b3

: <%@ Property Name="List" Type="CodeSm th. Cust onProperties. StringCollection" Category="Custont :
H Description="This is the list." % !

When the user executes the template, the specified property will display a builder button on the property sheet:

Properties Box
4l d &

List
This is the list.

_ Properties Map Editor |

Clicking the builder button will open an editor that allows the user to type strings on separate lines:

String Collection Editor @

Apples

Oranges
Fish

o You can also edit the members of the collection directly in the property grid as a comma-separated list.

In your code, you can iterate through the collection as an array:

The list is:

<%for (int i =0; i < List.Count; i++)\{ % :
<% List[i] % !
<%\} % 5

CodeSmith.BaseTemplates

The CodeSmith.BaseTemplates sample project contains two classes that inherit from CodeTemplate. These classes can be used to add
functionality to your templates by referencing them in the Inherits attribute of the CodeTemplate directive:

® The OutputFileCodeTemplate class saves its output to a file
®* The SqlCodeTemplate class includes utility functions for working with data stored in a SQL database

In addition, the project includes two utility classes that you can use via a reference to the CodeSmith.BaseTemplates assembly:

® The StringUtil class includes methods for working with strings
® The ScriptUtility class includes methods for working with SQL scripts

You can find this project in your extracted samples folder (Documents\CodeSmith
Generator\Samples\<VERSION>\Projects\CSharp\BaseTemplates).

OutputFileCodeTemplate

To base a template on the OutputFileCodeTemplate class, you inherit from this class in your template's CodeTemplate directive:

<% CodeTenpl at e Language="C#" Tar get Language="C#" | nherits="QutputFi | eCodeTenpl at e" :
Description="Build custom access code." % H
<%@ Assenbl y Nane="CodeSnith. BaseTenpl at es" %

The OutputFileCodeTemplate class does two things. First, it adds a property named OutputFile to your template. This property requires you to
select a filename. Second, the template overrides the OnPostRender method to write the output of your template to the specified file after
CodeSmith Generator has finished generating code.

1, Ifyou want to customize the Save File dialog box used by the OutputFile property, you can override the OutputFile property in
your own template. For example, if you want to force the user to select a .cs file for output, you'd include this code in your
template:

<script runat="tenpl ate">

/1l Override the QutputFile property and assign our specific settings to it.

[Fil eDial og(Fil eD al ogType. Save, Title="Select Qutput File", Filter="C# Files (.cs)|.cs",
Def aul t Ext ensi on=".cs")]

public override string QutputFile

{
get {return base. QutputFile;}
set {base. QutputFile = value;}
}
</scri pt>
SqlCodeTemplate

To base a template on the SglCodeTemplate class, you inherit from this class in your template's CodeTemplate directive:

http://www.codesmithtools.com/help/Content.aspx/CodeSmith.chm/The_CodeTemplate_Directive.html

<% CodeTenpl at e Language="C#" Tar get Language="C#" | nherits="Sqgl CodeTenpl ate" Descri ption="Build :
data access |ayer." % H
<%@ Assenbl y Nane="CodeSnit h. BaseTenpl at es" %

The SqlCodeTemplate class contains numerous utility methods designed to make it easier to work with SQL databases. These include:

GetCSharpVariableType - Returns the equivalent C# variable type for a database column.
GetMemberVariableDeclarationStatement - Returns a C# member variable declaration statement.
GetMemberVariableDefaultValue - Returns a default value based on a column's data type.
GetMemberVariableName - Returns the C# member variable name for a given identifier.

GetPropertyName - Returns the name of the public property for a given column.

GetReaderMethod - Returns the name of the typed reader method for a given column.

GetSqlDbType - Returns the SqlDbType based on a given column.

GetSqlParameterExtraParams - Generates any extra parameters that are needed for the ADO parameter statement.
GetSqglParameterStatement - Returns a T-SQL parameter statement based on the given column.
GetSqlParameterStatements - Generates an assignment statement that adds a parameter to a ADO object for the given column.
GetSqglReaderAssignmentStatement - Returns a typed C# reader.ReadXXX() statement.

GetValidateStatements - Generates a batch of C# validation statements based on the column.

IncludeEmptyCheck - Determines if a given column should use a check for an Empty value.
IncludeMaxLengthCheck - Determines if the given column's data type requires a maximum length to be defined.
IsUserDefinedType - Determine if the given column is using a UDT.

lﬂ For a complete listing of all SqlCodeTempalate methods please refer to the API documentation.

String Util

To use the functions in the StringUtil class, you should set a reference to the CodeSmith.Engine assembly and import its namespace:

: <%@ Assenbl y Name="CodeSni t h. Engi ne" % :
H <% | nport Nanespace="CodeSnit h. Engi ne" % H

The StringUtil class includes these static methods:

® |sPlural - returns True if a string is plural.

® [sSingular - returns True if a string is singular

® ToCamelCase - converts a set of words to a single camel case identifier
® ToPlural - converts a word to its plural form

® ToSingular - converts a word to its singular form

® ToSpacedWords - converts a camel case identifier to separate words

ﬂl For a complete listing of all StringUtil methods please refer to the APl documentation.

Example

The following example will show how you can mapping overrides and StringUtil. StringUtil ToPlural and ToSinglular supports overriding the
converted word with a special csmap file. The default override file is called Plural-Overrides.csmap. It will be used by default. However, you can
use a different Map file if needed.

<%@ CodeTenpl at e Language="C#" Tar get Language="Text"
Debug="Fal se" Description="Plural Overrides." %

<%@ Map Nane="Pl ural Overrides"

Src="Plural.csmap" Reverse="Fal se"

Descri ption="Convert systemdata types to c# alias" %
<%@ Map Nane="Si ngl eOverri des"

Src="Plural .csmap" Reverse="True"

Description="Convert systemdata types to c# alias" %

http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/caf8979f-1e2d-1132-0cad-f654f3c13b2e.htm
http://www.codesmithtools.com/help/##GeneratorAPI.chm/html/38d1e73d-3da4-3bd1-b38e-458ae966df67.htm

Using the built in csmap

: Child: <% StringUWil.ToPlural ("Child") % :
: Children: <% StringUtil.ToSingular("Children") % :

: Knife: <% StringUil.ToPlural ("nife", Plural Overrides) % :
: Knives: <% StringUtil.ToSingular("nives", SingleOverrides) % :

Knife: <% StringUtil.ToPlural ("nife", "Plural.csmp") % :
: Knives: <% StringUtil.ToSingular("nives", "Plural.csmap") % :
ScriptUtility

To use the functions in the ScriptUtil class, you should set a reference to the CodeSmith.Engine assembly and import its namespace:

! <%@ Assenbly Nanme="CodeSnith. Engi ne" % i
! <% | nport Nanespace="CodeSnmit h. Engi ne" % :

The ScriptUtil class includes a single static method to execute a SQL script against a supplied connection. You'll find this method useful when you
want to execute generated SQL scripts.

Building a custom UlTypeEditor

This document will walk you through the process of building a custom UITypeEditor as shown here. This UITypeEditor will populate a
DropDownlList with table names from a chosen database.

Building the DropDownListProperty

First you need to create a public class that will hold the data of the drop down list. In this example | named my class DropDownListProperty.

public class DropDownLi st Property
{
}

Next we will need to add the properties and the constructors.

public class DropDownLi st Property

i { 5
private List<string> _values = new List<string>();
publ i c DropDownli st Property() :
i { ;
; Sel ectedl tem = "None"; ;
i } i
publ i c DropDownLi st Property(List<String> val ues)
i { ;
i i f (val ues. Count > 0) i
: Sel ectedl tem = val ues[0] ; :
el se
H Sel ectedl tem = "None"; H
Val ues = val ues;
| } |
public List<string> Val ues :
| { |
: get :
i { ;
i if (_values == null) i
_values = new List<String>();
return _val ues; 5
s } =
set :
g { i
H if(value !'= null) H
§ _val ues = val ue; i
|) |
i } :
[Browsabl e(fal se)]
public string Selectedltem{ get; set; }
E } =

You'll notice that we have a public property called Selectedltem. This property will hold the initial value which will be the selected value when a
user selects a choice. By default we set this to "None" in the constructor. We also set an attribute on the property Browsable(false). This tells the
PropertyGrid not to display this property.

Updating the content that is displayed in the Property Sheet.

We now want to override the ToString() method to the DropDownListProperty so the dropdown displays the current selected value.

¢ 1] <summary> !
: /1l The value that we return here will be shown in the property grid. :
! 11l </ summary> i
i /1] <returns></returns> H
public override string ToString()
Lo !

return Sel ectedltem

Implementing the custom UITypeEditor

Now it is time to implement the class that controls how my class is displayed in the property grid. We will want to create a class that inherits from
UITypeEditor.

/1] <sunmary>

/1] Provides a user interface for selecting a state property.
/1l </sumary>

public class DropDownlLi st PropertyEditor : Ul TypeEditor

Next we will add a private member variable named _service. We will need to declare this member variable because we will want to tie into an
event in a little bit. Now it is time to override the EditValue method.

/11 <sunmary>

/11 Displays a list of available values for the specified conponent than sets the val ue.

/1] </summary>

/1] <param nanme="cont ext">An | TypeDescri ptor Context that can be used to gain additional context
information. </ parane

/1] <param nanme="provi der">A service provider object through which editing services may be

obt ai ned. </ par an>

/1] <param nanme="val ue">An i nstance of the val ue being edited. </paran>

/1l <returns>The new val ue of the object. If the value of the object hasn't changed, this nethod
should return the same object it was passed. </returns>

public override object EditValue(lTypeDescri ptorContext context, |ServiceProvider provider, object

val ue)
{
if (provider !'= null)
{
/1 This service is in charge of popping our ListBox.
_service =

((I WndowsFor nsEdi t or Servi ce) provi der. Get Servi ce(typeof (| WndowsFor nsEdi t or Service)));

if (_service != null && value is DropDownLi st Property)
{
var property = (DropDownLi st Property) val ue;
var list = new ListBox();
list.dick += ListBox_Qick;
foreach (string itemin property. Val ues)
{
list.ltenms. Add(item;
}
/1 Drop the list control.
_service. DropDownControl (list);
if (list.Selectedltem!= null && |ist.Sel ectedlndices. Count == 1)
{
property. Sel ectedltem = |ist. Sel ectedltem ToString();
value = property;
}
}

}

return val ue;

It is important not to be overwhelmed by the code above. The object value that is passed in is the DropDownListProperty class that holds our
data. All we need to do is some safe type checking (value is DropDownListProperty) and then cast the value. The _service variable holds the
property grid control that we are interacting with.

We create a ListBox object as that will hold our list of data (Values property from the DropDownListProperty class). It also exposes a Click event
that will allow us to know when someone clicks on the drop down list. We will add an event handler ListBox_Click to the Click event so we can
close the drop down list. If we skipped this step then the list would always be shown.

The next few lines just adds all our data into the Listox and calls DropDownControl(Control). This shows the populated ListBox control.
Finally we will set the Selectedltem to the Item that the user selected.

It is time to add the method that we wired up to the Click event.

private void ListBox_Oick(object sender, EventArgs e)
{
if(_service !'= null)
_service. C oseDropDown();

/1] <summary>
/1l Cets the editing style of the <see cref="EditVal ue"/> method.
11l </ summary>
/11 <param nane="cont ext">An | TypeDescri pt or Context that can be used to gain additional context
i nformati on. </ par an»
/1l <returns>Returns the DropDown style, since this editor uses a drop down list.</returns>
public override U TypeEditorEditStyle GetEditStyle(lTypeDescri ptorContext context)
{
/1 We're using a drop down style U TypeEditor.
return Ul TypeEditor Edi t Styl e. Dr opDown;

Finally we will go back and add a Editor attribute to the DropDownListProperty class. This will tell the PropertyGrid that when this property type is

loaded to use the new UITypeEditor class we created.

[Edi tor (typeof (Dr opDownLi st PropertyEditor), typeof(System Draw ng. Design. U TypeEditor))]

lﬂl Please click here for the complete source code for these two classes.

For more information on building custom UITypeEditors, please refer to the fol Michael Weinhardt and Chris Sells' article "
Building Windows Forms Controls and Components with Rich Design-Time Features, Part 2" on the MSDN Web site.

Setting up a DataDirectory for Generator Connection Strings

Using a DataDirectory for Generator

You can specify a DataDirectory for CodeSmith Generator to easily share and discover MS SQL Express databases. CodeSmith Generator ships
with a version of the Petshop database whose Datasource uses a DataDirectory.

The DataDirectory Path

By default, the DataDirectory folder for CodeSmith Generator is:
Windows 2000/XP: C:\Documents and Settings\<USER NAME>\My Documents\CodeSmith Generator\Samples\<VERSION>\Data

Windows Vista/Windows 7: C:\Users\<USER NAME>\Documents\CodeSmith Generator\Samples\<VERSION>\Data

Customizing the DataDirectory Path

You can customize the path that Generator uses to set up the DataDirectory in the AppDomain. The first step is to open the Generator Options
dialog. Once this dialog is open, select the Engine node on the left hand side of the options.

http://msdn.microsoft.com/msdnmag/issues/03/05/Design-TimeControls/default.aspx

Options @

4 Compile -
. File Associations CondtionalCompilation
- Global Exclusions 4 Merge
..... Customer Experience Im LanguageRegion Definitions {Collection)
- Schema Provider Merge Strategy Aliases {Collection) E
4 Paths
ApplicationDirectory C\Program Files (x86)\CodeSmith
D:\Documents\CodeSmith Generator\Samples\WERSION\Data [..J|
CodeSmithMaps Directory D \Documents\CodeSmith Generator\Maps %
CodeSmithSample Directory D \Documents\CodeSmith Generator\Samples
CodeSmith TemplatesDirectory D \Documents\CodeSmith Generator\Templates
PluralCvemides Map File D \Documents\CodeSmith Generator\Maps\Plural-Overrides csmap
ProbingPath bin;Addlins:SchemaProviders
PropertySetCache Directory CA\Users\Blake Niemyiski\AppData\local\CodeSmith\PropertySet({ ™
CodeSmithDataDirectory
(3ets or sets the data directory.
1| m k
0K || Cancsl

Finally, look for the CodeSmithDataDirectory Property under the Paths category and select the folder picker. Changing this path to another
directory will cause Generator to use the new path the next time Generator starts up.

Frequently Asked Questions

How can | add comments to my templates?

Template comments can be added using the <%- -%>tokens.

How can | create a property that has a drop-down of values to choose from?
Use a script block to define an enumerated property.

How can | prevent ASP.NET tags from confusing my templates?

Properly escape them using ASP.NET tags.

How can | declare a constant in my template?

Constants must be declared inside <script runat="template"> tags.

...

<script runat="tenpl ate">
private const string MY_CONST = "exanple";
</scri pt>

How can | debug my templates?

You can compile your templates in debug mode and set breakpoints in them.

How can | add a property that lets me select a folder?

Decorate the property with the FolderNameEditor attribute.

How can | use sub-templates?

CodeSmith Generator includes a full API to let you make use of sub-templates.

What assemblies and namespaces are loaded by default into a template?

Assemblies:

System

System.Core
System.Xml
System.Data
System.Drawing
System.Design
Microsoft.VisualBasic
System.Windows.Forms
CodeSmith.Engine
CodeSmith.Core

Namespaces:

System

System.Data
System.Diagnostics
System.ComponentModel
Microsoft.VisualBasic
CodeSmith.Engine

Is it possible to determine whether a column is an identity column using SchemaExplorer?

Yes, use the CS_lIsldentity property.

Is it possible to determine a column's default value using SchemaExplorer?

Yes, use the CS_Default property.

...

<%

: foreach(Col umSchema cs in SourceTabl e. Col ums)

i {

; if (cs.ExtendedProperties["CS_Default"] != null)

: {

Response. Wit eLi ne(cs. Ext endedProperties["CS_Defaul t"]. Val ue);
; }

Z }

: %

How can | enumerate the input and output parameters of a stored procedure using SchemaExplorer?

The CommandSchema object contains both input and output parameter collections which can be used to read these parameters.

What if my template contains non-ASCIlI characters?

You can use the ResponseEncoding attribute of the CodeTemplate directive to set the encoding for the template.

Tips and Tricks

®* When you need to generate multiple files as part of a single code-generation process, consider using one sub-template for each file. Call
the sub-templates from a master template and use the RenderToFile method to output each sub-template.

® To generate multiple output files as part of an automated process, you can use the CodeSmith Generator Project support from the
console or MSBuild.

® You can use Template Explorer to create property set XML files for use by the CodeSmith Generator Console Application.

® You can drag and drop a template from Template Explorer window to any application that supports dropping text. When you drop the

template, CodeSmith Generator will display the template's property sheet. Fill in the metadata for the template, click the Generate button,

and the template's output will be rendered directly to the application where you dropped the template.

The new XmlPropertydirective gives you a strongly-typed object model and statement completion for metadata stored in XML files.

You can mix your own custom code with generated code by employing one of several different active generation strategies.

If you're generating SQL Scripts, CodeSmith Generator can execute the scripts for you immediately after generating them.

Use merge strategies to preserve custom code while regenerating from templates as part of an automated build process.

Use Ctrl+Shift+M in the Template Editor to collapse all template code blocks. This is useful to quickly see all static template content.

Use the StoredProcedures.cst template to generate standard create, retrieve, update, and delete stored procedures for a given table

instantly.

® You can use Trace.WriteLine to output messages to the Debug output window.

Internet Links

Home Page

Sales

Support

CodeSmith Community
Template Gallery

Reference

For references please see:

® System Requirements
® CodeSmith Generator Samples

System Requirements

CodeSmith Generator requires the .NET Framework (version 4.0), but it has no other hardware or software prerequisites. It should run fine on any
system that meets Microsoft's minimum requirements for installing the .NET Framework.

CodeSmith Generator Samples

When you install CodeSmith Generator, you also get a wide variety of useful samples. These samples are of two types. Sample templates,
located under the Documents\CodeSmith Generator\Samples\<VERSION>\Projects\Templates folder, can be loaded into CodeSmith
Generator and used to generate code. Sample projects, located under the Documents\CodeSmith Generator\Samples\<VERSION>
\Projects\Samples folder, show you how you can extend and customize CodeSmith Generator.

Generator Templates

CodeSmith Generator ships with a complete template set that helps you get up and running in no time flat. These template sets include
ActiveSnippet Templates, Database Templates, Example Templates, Framework Templates and various other templates. Why waste time with
repetitive tasks? Use ActiveSnippets and focus on other parts of your application.

ActiveSnippet Templates

ActiveSnippet's allow you to quickly reduce the amount of time it takes to get your job done. Any template can be used as an ActiveSnippet.
CodeSmith Generator ships with active snippets that will speed up the process of creating custom events and exceptions. Also you can quickly
generate an enumeration or properties from database meta data.

Database Templates

Whether you are looking for an easier ways to create a business object, document your database, script your table data, execute or create stored
procedures, generator is here to save you time and headaches.

The Business Object template is a template that is a great template to use if your looking to quickly create an entity for your project. Many
developers also use this template as a base template when they need to create a new POCO (Plain Old CLR Obiject), Data Transfer Object or
Domain Class template.

The Script Table Data and Extended Properties template allows you to generate a SQL script that can be used to migrate your data between
database servers or import existing data into newly created databases.

The DbDocumenter template will create a nicely formatted html document of your entire database.

The Stored Procedure template will create (Insert, Update, Delete, Select) Stored Procedures based on a Database Table. Everything is
configurable to fit your unique requirements.

The Command Wrapper template will create a wrapper around any SQL Stored Procedure or SQL Function. An easy to use API allows you to
execute a stored procedure or function by calling Execute() which will return get back a strongly typed object or result. When used in conjunction
with the Stored Procedure templates, you can quickly get data from your database.

The Typed DataSet template creates typed DataSet and DataAdapter classes based on a database table of your choosing.
Example Templates

We provide a set of example templates that demonstrate how to use various Generator features in your own custom template.

The ASP.NET folder contains a template that will show you how to use Master Templates that will generate an ASP.NET default.aspx page.
(Watch the Master Templates Video)

https://www.codesmithtools.com/
https://www.codesmithtools.com/product/generator#pricing
https://www.codesmithtools.com/product/generator#support
http://community.codesmithtools.com/
http://community.codesmithtools.com/CodeSmith/m/templates/default.aspx
http://msdn.microsoft.com/en-us/library/8z6watww.aspx
http://www.codesmithtools.com/product/frameworks
http://www.codesmithtools.com/product/generator#features
http://www.youtube.com/v/7Qrjo-Gj0Xc

The Basic Samples folder contains templates that display the use of Master Templates, Partial templates and Ling To Objects in your templates.
The Maps folder is a great example on how and when to use CodeSmith Generator Maps.

The Merge folder contains templates that will show you how to use Preserve Region and Insert Region Merge Strategies across different file
types and languages. (Watch the Merge Strategies Video)

The Photo Gallery folder contains templates combine using a Master Templates and code behind to create a generic photo gallery from a
directory of image files.

The Xml folder contains templates that show you how to generate from an Xml data source using the XmlProperty. (Watch the XmlProperty
Video)

Other Templates

The Other templates folder contains various templates that ease the use working with AJAX, Custom Collections (ArrayList, HashTable, Queues,
SortedList and more) and WIX (Windows Installer Xml toolset).

Generator Sample Projects

SchemaProvider source code - All schema provider source code can be found under the CSharp folder.
BaseTemplates - This project includes the source code for the CodeSmith.BaseTemplates classes.
ConsoleSamples - This folder contains samples for use with the CodeSmith Console Application.

VSintegrationSample - This project contains a sample of using the VS.NET integration to simulate generics with the CodeSmith Generator
Project integration.

CustomPropertiesSample - This project includes the source code for the CodeSmith.CustomProperties classes.
APISample - This project demonstrates the use of the CodeSmith API.

TypedDataSetSample - This project contains a test application for the typed DataSet templates.

Licensing and Distribution

For Licensing and Distribution information please see:

® Copyrights and Trademarks

® Software Licenses

® CodeSmith Generator Editions
® Product Activation / Deactivation

Copyrights and Trademarks

CodeSmith Generator is a trademark of CodeSmith Tools, LLC.

.NET, Visual Basic, and Visual C# are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Software Licenses

CODESMITH GENERATOR LICENSE AGREEMENT

IMPORTANT--READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or an
entity) and CodeSmith Tools, LLC ("CODESMITH") for the CodeSmith Generator template based code generator software product and any
included components or materials ("SOFTWARE PRODUCT"). BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE
PRODUCT, YOU AGREE TO BE BOUND BY THE TERMS OF THIS EULA. IF YOU DO NOT AGREE TO THE TERMS OF THIS EULA, YOU
ARE NOT AUTHORIZED TO INSTALL, COPY, OR OTHERWISE USE THE SOFTWARE PRODUCT.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by United States copyright laws and international copyright treaties, as well as other intellectual
property laws and treaties. The SOFTWARE PRODUCT is licensed, not sold.

1. GRANT OF LICENSE. This EULA grants you the following rights:

a. Per User License. The SOFTWARE PRODUCT permits a single user to use the SOFTWARE PRODUCT under the terms of the license. If the
SOFTWARE PRODUCT is installed on a single computer used by multiple users, a customer must purchase additional licenses for each user that
accesses the SOFTWARE PRODUCT. Further, if the SOFTWARE PRODUCT is installed or accessed through a network, the customer must

http://community.codesmithtools.com/CodeSmith_Community/b/jgonzalez/archive/2007/06/09/tips-amp-tricks-codesmith-maps.aspx
http://www.youtube.com/v/W1SpzAQebZk
http://www.youtube.com/v/9xxiy2k7SZY
http://www.youtube.com/v/9xxiy2k7SZY
http://wix.sourceforge.net/
http://www.microsoft.com

purchase additional licenses for each user that accesses the SOFTWARE PRODUCT through the network.
b. Use of Generated Output. You may distribute the output of your custom templates or the included templates in any way.

2. COPIES. You may make copies of the SOFTWARE PRODUCT provided that any such copy: (i) is created as an essential step in the utilization
of the SOFTWARE PRODUCT as licensed under this EULA, or (ii) is only used for archival purposes to back-up the Software. All trademark,
copyright and proprietary rights notices must be faithfully reproduced and included by you on such copies. You may not make any other copies of
the Software.

3. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

a. Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or disassemble the
SOFTWARE PRODUCT, except and only to the extent that such activity is expressly permitted by applicable law notwithstanding this limitation.
b. Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use on
more than one computer.

c. Redistribution. The SOFTWARE PRODUCT may not be redistributed in any way.

d. Custom Template Distribution. You may distribute your custom templates for the SOFTWARE PRODUCT in any way that you like. You may
also charge money for your custom templates.

e. No Rental. You may not rent, lease, lend or provide commercial hosting services to third parties with the SOFTWARE PRODUCT.

f. Termination. Without prejudice to any other rights, CODESMITH may terminate this EULA if you fail to comply with the terms and conditions of
this EULA. In such event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

4. ADDITIONAL SOFTWARE/SERVICES.

a. Supplements. This EULA applies to additional software and updates of the SOFTWARE PRODUCT, including without limitation supplements,
service packages, hot fixes, or add-on components (collectively "Supplements") that CODESMITH may provide to you or make available to you
after the date you obtain your initial copy of the SOFTWARE PRODUCT, unless other terms are provided along with such Supplements.

5. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs, animations,
video, audio, music, text, SAMPLE CODE, and "applets" incorporated into the SOFTWARE PRODUCT) and any copies of the SOFTWARE
PRODUCT are owned by CODESMITH. The SOFTWARE PRODUCT is protected by copyright laws and international treaty provisions.
Therefore, you must treat the SOFTWARE PRODUCT like any other copyrighted material except that you may install the SOFTWARE
PRODUCT.

6. U.S. GOVERNMENT RESTRICTED RIGHTS. All SOFTWARE PRODUCT provided to the U.S. Government pursuant to solicitations issued on
or after December 1, 1995 is provided with the commercial license rights and restrictions described elsewhere herein. All SOFTWARE PRODUCT
provided to the U.S. Government pursuant to solicitations issued prior to December 1, 1995 is provided with "Restricted Rights" as provided for in
FAR, 48 CFR 52.227-14 (JUNE 1987) or DFAR,48 CFR 252.227-7013 (OCT 1988), as applicable.

7. EXPORT RESTRICTIONS. You acknowledge that the SOFTWARE PRODUCT is subject to U.S. export jurisdiction. You agree to comply with
all applicable international and national laws that apply to these products, including the U.S. Export Administration Regulations, as well as
end-user, end-use and destination restrictions issued by U.S. and other governments.

8. DISCLAIMER OF WARRANTY

To the maximum extent permitted by applicable law, CODESMITH provides the SOFTWARE PRODUCT and support services (if any) AS IS AND
WITH ALL FAULTS, and hereby disclaim all other warranties and conditions, whether express, implied, or statutory, including, but not limited to,
any (if any) implied warranties, duties or conditions of merchantability, of fithess for a particular purpose, of reliability or availability, of accuracy or
completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the SOFTWARE
PRODUCT, and the provision of or failure to provide support or other services, information, software, and related content through the
SOFTWARE PRODUCT or otherwise arising out of the use of the SOFTWARE PRODUCT. ALSO, THERE IS NO WARRANTY OR CONDITION
OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION, OR NON-INFRINGEMENT WITH REGARD
TO THE SOFTWARE PRODUCT.

9. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL, AND CERTAIN OTHER DAMAGES.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL CODESMITH BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, PUNITIVE, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO, DAMAGES
FOR LOSS OF PROFITS OR CONFIDENTIAL OR OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY, FOR
LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE,
AND FOR ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR
INABILITY TO USE THE SOFTWARE PRODUCT, THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES,
INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE PRODUCT OR OTHERWISE ARISING OUT OF THE
USE OF THE SOFTWARE PRODUCT, OR OTHERWISE UNDER OR IN CONNECTION WITH ANY PROVISION OF THIS EULA, EVEN IN THE
EVENT OF THE FAULT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, BREACH OF CONTRACT, OR BREACH OF WARRANTY OF
CODESMITH, AND EVEN IF CODESMITH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

10. LIMITATION OF LIABILITY AND REMEDIES. NOTWITHSTANDING ANY DAMAGES THAT YOU MIGHT INCUR FOR ANY REASON
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, ALL DAMAGES REFERENCED ABOVE AND ALL DIRECT OR GENERAL DAMAGES),
THE ENTIRE LIABILITY OF CODESMITH UNDER ANY PROVISION OF THIS EULA AND YOUR EXCLUSIVE REMEDY FOR ALL OF THE
FOREGOING SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR
U.S.$5.00. THE FOREGOING LIMITATIONS, EXCLUSIONS AND DISCLAIMERS SHALL APPLY TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, EVEN IF ANY REMEDY FAILS ITS ESSENTIAL PURPOSE.

11. APPLICABLE LAW. This EULA is governed by the laws of the State of Texas.

12. ENTIRE AGREEMENT. This EULA (including any addendum or amendment to this EULA which is included with the SOFTWARE PRODUCT)
is the entire agreement between you and CODESMITH relating to the SOFTWARE PRODUCT and support services (if any), and it supersedes all

prior or contemporaneous oral or written communications, proposals, and representations with respect to the SOFTWARE PRODUCT or any
other subject matter covered by this EULA. To the extent the terms of any CODESMITH policies or programs for support services conflict with the
terms of this EULA, the terms of this EULA shall control.

Premier Support

Why should | purchase Premier Support?

Premier Support is a support option that can be added to any of our CodeSmith Generator licenses. With it you get the following:
® FREE upgrades to new major and minor releases of CodeSmith Generator.
® Priority access to the CodeSmith development team for your support issues.
® 1 Business day email response time with priority over standard users.
® Access to bug fixs and nightly builds without waiting for official releases.

Those without current Premier Support will only have access to the version they received at the time of purchase and will have to pay for any
major upgrades.

What is the cost of Premier Support?
The cost of Premier Support is $99 for one full year and at the end of the year we send out a renewal notice to remind you of when your support

expires so you can renew it before the end of the expiration date. Upon renewing the license, we add the year you paid for to the end of the
expiration date.

When can | purchase Premier Support?

Users have the following choices:

® Purchase 1 year of Premier Support at the time of purchasing or upgrading a license.
® Purchase 1 year of Premier Support at a later date. This will include an additional fee on top of the Premier Support cost.
® Pay for support on a per incident basis.

You can purchase Premier Support by following the steps below.

Where can | purchase Premier Support?

New Orders

You can add Premier Support to your cart when adding CodeSmith Generator to your cart.

Existing Orders

You can purchase Premier Support by visiting the Premier Support Renewal Form and entering your CodeSmith Generator license key.

CodeSmith Generator Editions

CodeSmith Generator
CodeSmith Generator includes batch code generation, template caching, Visual Studio integration, the ability to use the CodeSmith API in custom

internal applications, merging support and much more. From small to large complex code generation scenarios CodeSmith Generator is the
perfect tool.

) CodeSmith Generator is licensed per-user.

CodeSmith Generator SDK
The SDK Edition enables distribution of custom applications that use the Generator API (including SchemaExplorer). These applications can

make use of the full power of the Generator Engine in a programmatic fashion. You will be able to distribute the Generator assemblies with your
application and include a runtime SDK license either in your application folder or shared license folder.

The Generator SDK only allows for the distribution of Generator Assemblies internally. To use the Generator SDK outside of
your organization one must purchase a Commercial Generator SDK license.

CodeSmith Generator Server

http://www.codesmithtools.com/supportrenewal
http://www.codesmithtools.com/supportrenewal
http://www.codesmithtools.com/store
https://www.codesmithtools.com/supportrenewal

The Server Edition allows you to install CodeSmith Generator on a Build Server or Server. These applications can make use of the full power of
the Generator Engine in a programmatic fashion. The Server Ddition does not allow any access to CodeSmith Generator's User Interfaces like
Template Explorer.

CodeSmith Generator Features:

Feature Generator Generator SDK Generator Server

Simple Template Syntax | | |
Execute Custom Templates | | |
Auto SQL Script Execution | | |
Extensible Metadata | | |
SchemaExplorer Schema Discovery APl | | |
Rich XML Support | I [
Sub Template Support | | |
Useful Sample Templates |

Console Client | |
Template Explorer Client

Generator Template Editor

Generator Map Support | |
Visual Studio Integration

Generator API | |
Statement Completion

Template Caching | |
Template Debugging | |
Merge Capabilities | |
Generator Project Support | |
MSBuild Support |
ActiveSnippet Support |

Product Activation and Deactivation

Activation

CodeSmith Generator must be activated on each computer where you will use it. Activation issues a unique license code to the computer to
permanently unlock CodeSmith Generator's functionality. The activation technology that CodeSmith Generator uses is designed to be as painless
as possible, and to never lock you out from your legitimate use of the product. By default, you can activate CodeSmith Generator on three
different computers, but you can obtain additional activations simply by sending an e-mail to support@codesmithtools.com. When you install a
new copy of CodeSmith Generator, you have a 30-day trial period to register the product, and then another 30-day grace period to complete the
product activation process.

When you first launch Template Explorer or the Template Editor, CodeSmith Generator will display the Enter Registration Information dialog box:

http://docs.codesmithtools.com/display/Generator/CodeSmith+Samples
http://docs.codesmithtools.com/display/Generator/Using+the+CodeSmith+Generator+Console+Application
http://docs.codesmithtools.com/display/Generator/The+Template+Explorer
http://docs.codesmithtools.com/display/Generator/Using+a+CodeSmith+Generator+Map
http://docs.codesmithtools.com/display/Generator/Using+the+CodeSmith+Generator+API
http://docs.codesmithtools.com/display/Generator/Using+a+CodeSmith+Project+from+MSBuild

Trial Activation

Please follow this guide if you are new to CodeSmith Generator and are trialing the software.

i Y
S CodeSmith Generator M

Enter Trial Key

Please enter your CodeSmith Generator trial key and click Try. If you
do not have a trial key, please click the Request Trial Key link on the
left. If you already have a license, click the Register button below.

Trial Key »

Indicates that you must fill in the field.

Register | | Try | | Cconcel

ﬂ If you need a Trial Key, you can click on the Request Trial Key link on the left column of this dialog to request a Trial Key.

F

Please ensure that the Trial Key you enter in doesn't have any punctuation or trailing or leading spaces before pressing the Try
Button.

If you are using a Trial version of CodeSmith Generator you need to enter in your trial key and click the Try button. If you already own a license
you must click the register button and follow the steps defined below.

If you proceed in trial mode, CodeSmith Generator will display the Trial Mode dialog box:

' Y
8 CodeSmith Generatar ﬂ

R

GENERATOR

Generator lets you reduce repetitive coding.

30 of 30 days
remaining
—
Generate your code in less time fewer bugs.

Produce consistent code that adheres to your standards.

Create your own custom templates for any language.

BuyNow | | Regster || Try %J | Cancel

From this dialog box, you may:

® Click Register to return to the Enter Registration Information dialog box.
® Click Buy Now to learn more about purchasing CodeSmith Generator.
® Click Try to proceed with your CodeSmith Generator session.

® Click Cancel to abort your CodeSmith Generator session.

Non-Trial Activation

Please follow these steps if you have already purchased CodeSmith Generator.

F B’
& CodeSmith Generator ﬁ

Enter Trial Key

r your CodeSmith Generator trial key and click Try. If you
do not have a trial key, please click the Request Trial Key link on the
left. If you already have a license, click the Reqgister button below.

Trial Key »

Indicates that you must fill in the field.

From the first screen, you will want to select the Register button.

' Y
S CodeSmith Generatar ﬂ

Register CodeSmith Generator
To continue you must register your copy of CodeSmith Generator.

Organization

Serial Number @

Email Address

Please enter your name, organization information, email address, and the serial number that you received at the time of purchase. Click the
Register button to continue with the activation process. If activation is successful, this activation dialog will close.

ﬂ Please contact Sales if you have lost your serial number. Please provide an Order Number if possible.

F:

Please ensure that the Serial Key you enter in doesn't have any punctuation or trailing or leading spaces before pressing the
Register Button.

When you enter registration information with a valid serial number, CodeSmith Generator will display the following Activation Required dialog box
if CodeSmith Generator cannot connect to the internet:

http://www.codesmithtools.com/contactus

' Y
S CodeSmith Generatar ﬂ

Activate CodeSmith Generator

=

2

ﬂ To continue you must activate which verifies that you are using a fully
ﬂ licensed version of the software.

Give this machine a nickname to help you remember where you've installed the software.

10 of 15 days CodeSmith Support Maching|
remaining

— |

Activate Over the Internet

Activate by Entering a Code

Trvad rial number

ome features may be disabled or reduced until you complete activation.

lore about Activation

Activate Later] [Cancel

At this point, you have four choices. You may:

® Select Activate Over the Internet if your computer is connected to the Internet. This will attempt to automatically contact the CodeSmith
licensing servers to activate this installation without further intervention on your part. If your computer accesses the Internet through a
proxy server, click the Proxy Info link to enter your proxy server address, user name, and password.

® Select Activate by Entering a Code to manually enter activation information. This option will allow you to activate by phone or Email.

® Select the Activate Later button to continue without activation. This will postpone activation to a later time.

® Select the Cancel button to cancel the activation process.

Click on one of the four options to proceed.

If you choose the option to activate by Email or phone, CodeSmith Generator will display your serial number and machine key. Please note that
the machine key is randomly generated by CodeSmith.

' Y
S CodeSmith Generatar ﬁ

Activate Offline

Please contact customer service and provide them with the information
displayed below.

o

Serial Number

Capy to Clipbaard CS6@P -KBBIC -MTB8Q-BZAM7 - BEBDG -RSNFP -8F TV3
Copy to Email Machine Code

9R5T9-WU1YJ-73F9F-1AU39-VT3PR
Activation Code

<% (Go Back] [Activate J

Click the Copy to Clipboard to copy the information from this dialog to paste in an email. Please send an e-mail message with the above
information to support@codesmithtools.com.

You can also click the Copy to Email to send us an Email pre-populated with the above information.

You will receive your unlock code by return e-mail. Paste the unlock code into this dialog box and click Continue to finish the activation process.

ﬂ The serial number and machine key shown are for illustration only. Be sure to use the information from your own computer
when contacting support.

.a Please ensure that the Activation Code you enter in doesn't have any punctuation or trailing or leading spaces before pressing
the Activate Button.

Deactivation
To deactivate your license you need to open the About CodeSmith Generator dialog.

-

About CodeSmith Generator @

CodeSmith Generator Professional I:'SO.'I Rewvizion 14056 Check for updates
Copyright © 2002-2011 CodeSmith Tools, LLC. All rights reserved.

http:iwww codesmithtools.com/

Licensed to:
Blake Miemyjski

Sample templates by: Chris Nahr, Matthew Altadonna, Ricky Supit, Oskar Austegard

Lines Generated: 22 635 Beset Configure
Hours Saved: 22 635 / B0 (&wverage LOC per hour) = 4527
Money Saved: 452.7 * $60.00 (Average cost per hour) = 527.162.00

‘warning: This computer program is protected by copyright law and international
treaties. Unauthonzed reproduction or distnibution of this pregram, or any portion of it,
may result in severe civil and criminal penalties, and will be presecuted to the

maximum extent possible under law.

Next, click on the Deactivate button to start the deactivation process.

http://www.codesmithtools.com/contactus

,
8 CodeSmith Generator

Deactivate Your Software

Deactivating will permit you to install CodeSmith Generator on a

I nt machine. You do not need to de-activate to re-install on the
same machine if you have not changed any of the hardware. Once
deactivated you will no longer be able to use CodeSmith Generator on
this machine.

A\ During dea ion an attermpt will e tonotify the license server so youcan

automatica fivate on the newm

roufrom re-installing the
g agreement for license usage an

'@' Mare about Activation Deactivate l [Cancel

To finish the deactivation process click on the Deactivate button and select Yes to the following dialog.

-

s CodeSmith Generatar ES

'o Your license has been de-activated.

Keep a copy of this confirmation code code as proof of
deactivation.

CS60P-DIXFG-7RACS-4R45L -WFIHA-LROWX-VT8W

[Copryto uipboard] [oK |

Please note that the following generated key is for your records ONLY. To activate CodeSmith Generator on a new machine
please use your original serial number.

Activation Support

We strive for excellence, in the event that the activation process fails, please contact support as soon as possible with the following information.

1. The Serial Key you are trying to activate (E.G., CSX0OP-XXXXX...),

http://www.codesmithtools.com/contactus

2. Operating System Information (E.G., Windows 7 SP1 64bit),
3. The exact version of CodeSmith Generator that you installed (E.G., X.X.X.XXXXX)
4. A copy of the Activation Error information (Shown Below)

Also, if you receive a Validation Notice dialog box while trying to activate CodeSmith Generator like the one below:

-

Validation Motice

The sernal number could not be

used to unlock the software,
Please try again.

Please click on the lower left icon where the mouse icon is located. Doing so will copy any information available for the current dialog to the
clipboard. Please also attach this information that is in the clipboard along with the information outlined in steps one through three.

Next, please follow the step below.

i Y
S CodeSmith Generator M

License Not Found

There were problems trying to obtain a valid license.

A valid license could not be obtained for 'CodeSmith Generator'. Please
ﬂ contact CodeSmith Teols, LLC for assistance.

@ Next Steps

© Copy details to cliﬂﬁm

Show Details] [0K]

Please continue pressing the Cancel buttons on each dialog that you see until you get to the following screen.

Once you see this dialog, please click on the 'Copy details to clipboard' link to copy this information to the clipboard. Finally attach this
information as done in the previous step and send us the email.

	Home
	CodeSmith Generator API
	Using the Generator SDK

	User's Guide
	Welcome to CodeSmith Generator
	Installing and Upgrading
	Installing CodeSmith Generator
	Changing CodeSmith Generator

	Uninstalling CodeSmith Generator
	Upgrading CodeSmith Generator Templates
	Upgrading existing Property Set Xml Settings

	Introduction and Tutorials
	Main Features
	What's New
	Tutorials
	Getting Started
	Launching Template Explorer
	Opening a Template
	Setting Properties
	Generating Code
	Inspecting the Template
	Where to Go From Here

	Writing Your First Template
	Spotting the Need
	Creating the Template
	Start with the Result
	Static Content in the Template
	Making the Content Dynamic
	Adding a Template Property
	Using Properties in the Template
	Compiling the Template and Generating Code

	Write a Template with Database Metadata
	HTTP Endpoints in SQL Server 2005
	The Desired SQL Statements
	Creating the Template in the Generator Template Editor
	Setting up Enumerated Properties
	Setting up a SQL Property
	Writing the Database Code
	Testing the Final Result

	Visual Studio Integration
	Using Template Explorer
	What is Template Explorer?
	The Template Explorer Toolbar
	Managing the Folder Tree
	Editing Templates
	Executing Templates
	Working with the Output Window

	Using the Template Editor
	Template Editor User Interface
	Template Editor Toolbar
	Template Documents
	Template Document
	Generated Document

	The Properties Window
	The Output Window
	The Error Window

	Template Editor Features
	Bracket Highlighting
	Documentation Comment Editing
	Find and Replace
	Incremental Search
	Keyboard Shortcuts
	Line Modification Markers
	Outlining
	Statement Completion
	Tab Groups and Split Windows
	Template Navigation
	Themes and Syntax Highlighting

	Building, Running, and Compiling Templates
	Customizing CodeSmith Generator

	Using Schema Explorer
	Managing Extended Properties

	Using the Map Editor
	Developing using a Generator Map

	Using CodeSmith Generator Projects
	Manage Outputs
	Project Options

	Using a Generator Project inside Visual Studio
	Using Generator Project from Windows Explorer
	Using a Generator Project from MSBuild
	Using a Generator Project from Command-Line
	Anatomy of a Project File

	Using the Console Application
	Incorporating Generator into Your Build Process
	Basic Console Application Usage
	Handling Input
	Specifying Properties on the Command Line

	Handling Output
	Default Output Files in Templates

	Using ActiveSnippets
	ActiveSnippet Configuration

	Basic Template Syntax
	The CodeTemplate Directive
	Including Comments
	Declaring and Using Properties
	Property Directive
	Declaring an Enumerated Property
	Property Validation

	Escaping ASP.NET Tags
	The CodeSmith Generator Objects
	The CodeTemplate Object
	Overriding the GetFileName Method
	Overriding the ParseDefaultValue Method
	Overriding the Render Method
	Template Events
	The OnInit Event
	The OnPreRender Event
	The OnPostRender Event
	The OnPropertyChanged Events

	The Response Property

	The Progress Object
	The CodeTemplateInfo Object

	Advanced Template Syntax
	Understanding CodeSmith Generator's Code Behind Model
	Referencing Assemblies
	Importing Namespaces
	Including External Files
	Sharing Common Code
	Debugging Templates
	Outputting Trace and Debug Information
	Viewing the Compiled Template Source Code

	Using Master Templates
	Registering Sub-Templates
	Merging Properties into the Parent Template
	Copying Properties from the Parent Template
	Setting Properties in a Sub-Template
	Rendering a Sub-Template
	A Sub-Template Example

	Writing to Multiple Outputs

	Driving Templates with Metadata
	Using .NET Types
	Using SchemaExplorer
	The SchemaExplorer Object Model
	Connection Strings
	Choosing Objects
	Sorting Collections
	Using Extended Properties

	XML Support
	XML Property Examples

	Custom Metadata Sources
	Adding Designer Support
	Adding Property Set Support

	Generating from Source Code

	Advanced Topics
	Auto Executing Generated SQL Scripts
	Merge Strategies
	InsertClass Merge Strategy
	InsertRegion Merge Strategy
	PreserveRegions Merge Strategy
	Defining Your Own Merge Strategy

	Active vs. Passive Generation
	Using Inheritance to Enable Active Generation
	Using Merge Strategies to Enable Active Generation
	Using Partial Classes to Enable Active Generation

	Template Caching
	Version Control Support
	Building a Custom Schema Provider for SchemaExplorer
	Creating a Custom Schema Provider
	Building a Custom Schema Provider
	Debugging a Custom Schema Provider
	Deploying a Custom Schema Provider
	Upgrading a Custom Schema Provider

	Using CodeSmith.CustomProperties
	FileNameEditor
	StringCollection

	CodeSmith.BaseTemplates
	OutputFileCodeTemplate
	SqlCodeTemplate
	StringUtil
	ScriptUtility

	Building a custom UITypeEditor
	Setting up a DataDirectory for Generator Connection Strings

	Frequently Asked Questions
	Tips and Tricks
	Internet Links
	Reference
	System Requirements
	CodeSmith Generator Samples

	Licensing and Distribution
	Copyrights and Trademarks
	Software Licenses
	Premier Support
	CodeSmith Generator Editions
	Product Activation and Deactivation

